A117295 a(n) = phi(n)*(n - phi(n)).
0, 1, 2, 4, 4, 8, 6, 16, 18, 24, 10, 32, 12, 48, 56, 64, 16, 72, 18, 96, 108, 120, 22, 128, 100, 168, 162, 192, 28, 176, 30, 256, 260, 288, 264, 288, 36, 360, 360, 384, 40, 360, 42, 480, 504, 528, 46, 512, 294, 600, 608, 672, 52, 648, 600, 768, 756, 840, 58, 704, 60
Offset: 1
Examples
a(8) = phi(8)*(8 - phi(8)) = 4*4 = 16.
Links
- C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, PNAS September 1, 1953 vol. 39 no. 9 963-968.
Programs
-
Mathematica
a[n_] := Module[{phi = EulerPhi[n]}, phi*(n - phi)]; Array[a, 100] (* Amiram Eldar, Dec 21 2023 *)
-
PARI
a(n) = eulerphi(n)*(n-eulerphi(n));
Formula
For n > 1, a(n) = Sum_{k=1..n-1} PHI(k,n)^2 where PHI(k,n) = phi(n)*mu(n/GCD(k,n))/phi(n/GCD(k,n)), and has been considered by C. Nicol under the name G(n). - Michel Marcus, Nov 11 2012
From Amiram Eldar, Dec 21 2023: (Start)
Extensions
Offset corrected by Georg Fischer, Mar 17 2023