A117304 Numbers with an even number of digits such that the second half is twice the first half.
12, 24, 36, 48, 1020, 1122, 1224, 1326, 1428, 1530, 1632, 1734, 1836, 1938, 2040, 2142, 2244, 2346, 2448, 2550, 2652, 2754, 2856, 2958, 3060, 3162, 3264, 3366, 3468, 3570, 3672, 3774, 3876, 3978, 4080, 4182, 4284, 4386, 4488, 4590, 4692, 4794, 4896
Offset: 1
Examples
1020 is in the sequence because 20 = 2*10.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A019550.
Programs
-
Mathematica
s={};Do[id=IntegerDigits[n];d=Length[id] ;If[EvenQ[d]&&FromDigits[Drop[id,d/2]]==2FromDigits[Drop[id,-d/2]],AppendTo[s,n]],{n,10,4896}];s (* James C. McMahon, Sep 27 2024 *)
-
PARI
a(n)={my(k=10^logint(n*9\4,10)); (10*k + 2)*(n + (k-1)*5/9)} \\ Andrew Howroyd, Sep 27 2024
-
Python
from itertools import count, islice, takewhile def agen(): for d in count(2, 2): t = (int(str(k) + str(2*k)) for k in count(10**(d//2-1))) yield from takewhile(lambda x: x < 10**d, t) print(list(islice(agen(), 43))) # Michael S. Branicky, Dec 24 2021
Formula
a(n) = (10^(k+1) + 2)*(n + (10^k-1)*5/9) where k=floor(log(n*9/4)/log(10)). - Andrew Howroyd, Sep 27 2024