cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117304 Numbers with an even number of digits such that the second half is twice the first half.

Original entry on oeis.org

12, 24, 36, 48, 1020, 1122, 1224, 1326, 1428, 1530, 1632, 1734, 1836, 1938, 2040, 2142, 2244, 2346, 2448, 2550, 2652, 2754, 2856, 2958, 3060, 3162, 3264, 3366, 3468, 3570, 3672, 3774, 3876, 3978, 4080, 4182, 4284, 4386, 4488, 4590, 4692, 4794, 4896
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 26 2006

Keywords

Examples

			1020 is in the sequence because 20 = 2*10.
		

Crossrefs

Subsequence of A019550.

Programs

  • Mathematica
    s={};Do[id=IntegerDigits[n];d=Length[id] ;If[EvenQ[d]&&FromDigits[Drop[id,d/2]]==2FromDigits[Drop[id,-d/2]],AppendTo[s,n]],{n,10,4896}];s (* James C. McMahon, Sep 27 2024 *)
  • PARI
    a(n)={my(k=10^logint(n*9\4,10)); (10*k + 2)*(n + (k-1)*5/9)} \\ Andrew Howroyd, Sep 27 2024
  • Python
    from itertools import count, islice, takewhile
    def agen():
        for d in count(2, 2):
            t = (int(str(k) + str(2*k)) for k in count(10**(d//2-1)))
            yield from takewhile(lambda x: x < 10**d, t)
    print(list(islice(agen(), 43))) # Michael S. Branicky, Dec 24 2021
    

Formula

a(n) = (10^(k+1) + 2)*(n + (10^k-1)*5/9) where k=floor(log(n*9/4)/log(10)). - Andrew Howroyd, Sep 27 2024