A117335 Matrix inverse of triangle A117334.
1, 1, 1, 1, -1, 1, 1, 6, -4, 1, 1, -27, 24, -8, 1, 1, 164, -157, 66, -13, 1, 1, -1133, 1176, -571, 146, -19, 1, 1, 8930, -9853, 5335, -1621, 281, -26, 1, 1, -78739, 91498, -53989, 18635, -3909, 491, -34, 1, 1, 768276, -933451, 591157, -225490, 54430, -8382, 799, -43, 1
Offset: 0
Examples
Triangle begins: 1; 1,1; 1,-1,1; 1,6,-4,1; 1,-27,24,-8,1; 1,164,-157,66,-13,1; 1,-1133,1176,-571,146,-19,1; 1,8930,-9853,5335,-1621,281,-26,1; 1,-78739,91498,-53989,18635,-3909,491,-34,1; 1,768276,-933451,591157,-225490,54430,-8382,799,-43,1; ... Matrix inverse yields A117334: 1; -1,1; -2,1,1; -3,-2,4,1; -4,-13,8,8,1; -5,-44,-3,38,13,1; -6,-123,-117,125,101,19,1; -7,-314,-718,205,594,213,26,1; ... in which column k+1 is the Binomial transform of column k preceded by a zero (includes the k zeros above diagonal): column 1 = BINOMIAL[0, 1,-1,-2,-3,-4,-5,...] = [0,1,1,-2,-13,-44,-123,-314,-761,...]; column 2 = BINOMIAL[0, 0,1,1,-2,-13,-44,-123,-314,...] = [0,0,1,4,8,-3,-117,-718,-3314,...].
Comments