cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117357 Number of rooted trees with total weight n, where the weight of a node at height k is k (with the root considered to be at level 1).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 7, 11, 12, 16, 19, 25, 29, 38, 46, 59, 72, 91, 110, 141, 171, 214, 264, 331, 405, 509, 623, 777, 957, 1189, 1462, 1822, 2235, 2774, 3418, 4228, 5205, 6442, 7922, 9793, 12053, 14870, 18298, 22572, 27747, 34203
Offset: 0

Views

Author

Keywords

Comments

Equivalently, number of trees total weight n when the weight of each node is the size of its subtree. To get the equivalence, simply distribute the weights on each node one each to the node and each of its ancestors. - Franklin T. Adams-Watters, Oct 03 2009

Examples

			a(9) = 2; there is one tree with root at height 1 and 4 nodes at height 2 (1+4*2 = 9) and one with root at height 1, 1 node at height 2 and 2 nodes at height 3 (1+2+2*3 = 9).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(g(i-k, i-k, k+1)+j-1, j)*g(n-i*j, i-1, k), j=0..n/i)))
        end:
    a:= n-> g(n-1, n-1, 2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 16 2013
  • Mathematica
    g[n_, i_, k_] := g[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-k, i - k, k+1]+j-1, j]*g[n-i*j, i-1, k], {j, 0, n/i}]]]; a[n_] := g[n-1, n-1, 2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)

Formula

If a(n) is the equivalent of this sequence with the root node considered to be at level k, then a(n) is the Euler transform of a(n) shifted right k places. To compute N terms, take k so that (k+1)*(k+2)/2 > N, approximate a(n) by 1 if n=k, 0 otherwise and apply this rule repeatedly. Formula from Christian G. Bower.