cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117409 Number of partitions of n into odd parts in which the largest part occurs only once.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 222, 256, 296, 340, 390, 448, 512, 585, 668, 760, 864, 982, 1113, 1260, 1426, 1610, 1816, 2048, 2304, 2590, 2910, 3264, 3658, 4097, 4582, 5120, 5718, 6378
Offset: 1

Views

Author

Emeric Deutsch, Mar 13 2006

Keywords

Examples

			a(9)=5 because we have [9],[7,1,1],[5,3,1],[5,1,1,1,1] and [3,1,1,1,1,1,1].
		

Crossrefs

Cf. A117408.

Programs

  • Maple
    f:=sum(x^(2*k-1)/product(1-x^(2*i-1),i=1..k-1),k=1..40): fser:=series(f,x=0,70): seq(coeff(fser,x^n),n=1..65);
  • Mathematica
    Table[SeriesCoefficient[Sum[x^(2 k - 1)/Product[1 - x^(2 i - 1), {i, k - 1}], {k, 0, n}] , {x, 0, n}], {n, 57}] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    {a(n)=if(n<3, n==1, n-=2; polcoeff( prod(k=1, n, 1+x^k, 1+x*O(x^n)), n))} /* Michael Somos, May 28 2006 */

Formula

G.f.: Sum_{k>0} x^(2k-1)/(Product_{0
a(n) = A000009(n-2), n>2. - Michael Somos, May 28 2006
a(n) = A117408(n,1).
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 27 2016