A117433 Number of planar partitions of n with all part sizes distinct.
1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 149, 187, 243, 321, 413, 527, 735, 895, 1165, 1467, 1885, 2335, 2997, 3853, 4765, 5977, 7473, 9269, 11531, 14255, 17537, 22201, 26897, 33233, 40613, 50027, 60637, 74459, 89963, 109751, 134407, 162117, 195859
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Nov 15 2018: (Start) The a(10) = 35 strict plane partitions (A = 10): A 64 73 82 532 91 541 631 721 4321 . 9 54 63 72 432 8 53 71 431 7 43 52 61 421 6 42 51 1 1 1 1 1 2 2 2 2 3 21 3 3 3 4 31 4 . 7 6 5 43 42 5 41 2 3 4 2 3 3 3 1 1 1 1 1 2 2 . 4 3 2 1 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 100 terms from Franklin T. Adams-Watters)
- OEIS Wiki, Plane partitions
Crossrefs
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y) -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end: g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end: a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end: seq(a(n), n=0..60); # Alois P. Heinz, Nov 18 2012
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@DeleteCases[Join@@prs2mat[#],0],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* Gus Wiseman, Nov 15 2018 *) zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]]; b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[Plus, b[n, i - 1], If[i > n, {}, Join[{0}, b[n - i, i - 1]]], 0]]]; g[n_] := g[n] = If[n < 2, 1, (n - 1)*g[n - 2] + g[n - 1]]; a[n_] := With[{bn = b[n, n]}, Sum[bn[[i]]*g[i - 1], {i, 1, Length[bn]}]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)
Comments