A117438 Triangle T(n, k) = binomial(2*n-k, k)*(-4)^(n-k), read by rows.
1, -4, 1, 16, -12, 1, -64, 80, -24, 1, 256, -448, 240, -40, 1, -1024, 2304, -1792, 560, -60, 1, 4096, -11264, 11520, -5376, 1120, -84, 1, -16384, 53248, -67584, 42240, -13440, 2016, -112, 1, 65536, -245760, 372736, -292864, 126720, -29568, 3360, -144, 1
Offset: 0
Examples
Triangle begins 1; -4, 1; 16, -12, 1; -64, 80, -24, 1; 256, -448, 240, -40, 1; -1024, 2304, -1792, 560, -60, 1; 4096, -11264, 11520, -5376, 1120, -84, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
Table[Binomial[2*n-k, k]*(-4)^(n-k), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
-
Sage
flatten([[binomial(2*n-k, k)*(-4)^(n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021