cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117465 Denominator of -16/((n+2)*n*(n-2)*(n-4)).

Original entry on oeis.org

9, 0, 15, 0, 105, 24, 945, 120, 3465, 360, 9009, 840, 19305, 1680, 36465, 3024, 62985, 5040, 101745, 7920, 156009, 11880, 229425, 17160, 326025, 24024, 450225, 32760, 606825, 43680, 801009, 57120, 1038345, 73440, 1324785, 93024, 1666665, 116280
Offset: 1

Views

Author

Steven J. Forsberg, Apr 25 2006

Keywords

Comments

I came up with the equation to help analyze the path to stable orbits of the logistic function
f(n+1) = k*n(1-n) for f(n) with n => 9, then f(n)*A072346(n-5) = A072346(n+3).
a(n) is the denominator of f(n). The numerator of f(n) is -1 if n is even, else -16.

Examples

			f(5) = -16/(7*5*3*1) = -16/105, denominator a(5) = 105.
f(6) = -16/(8*6*4*2) = -1/24, denominator a(6) = 24.
		

Crossrefs

Programs

  • Maple
    f(n) := n -> (1/((n/4)+(n^2/4)-(n^3/16)-1))/n;
  • Mathematica
    Join[{9,0,15,0},Denominator[Table[-(16/(n (n^3-4 n^2-4 n+16))), {n,5,40}]]]    (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    Vec(3*x*(10*x^12-50*x^10+105*x^8-160*x^6-8*x^5-40*x^4+10*x^2-3)/((x-1)^5*(x+1)^5) + O(x^100)) \\ Colin Barker, Nov 11 2014

Formula

a(n) = denominator of the reduced -16/(n*(n-2)*(n+2)*(n-4)).
a(2n) = A052762(n+1).
a(n) = 5*a(n-2) -10*a(n-4) +10*a(n-6) -5*a(n-8) +a(n-10) for n>15. - R. J. Mathar, Mar 27 2010
a(n) = -(-17+15*(-1)^n)*(n*(16-4*n-4*n^2+n^3))/32 for n>3. - Colin Barker, Nov 11 2014
G.f.: 3*x*(10*x^12-50*x^10+105*x^8-160*x^6-8*x^5-40*x^4+10*x^2-3) / ((x-1)^5*(x+1)^5). - Colin Barker, Nov 11 2014

Extensions

Clearer definition from R. J. Mathar, Mar 27 2010