A117466 Triangle read by rows: T(n,k) is the number of partitions of n in which every integer from the smallest part k to the largest part occurs (1<=k<=n).
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 5, 1, 1, 0, 0, 0, 1, 6, 2, 0, 1, 0, 0, 0, 1, 8, 2, 1, 1, 0, 0, 0, 0, 1, 10, 2, 1, 0, 1, 0, 0, 0, 0, 1, 12, 3, 1, 0, 1, 0, 0, 0, 0, 0, 1, 15, 3, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 18, 4, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 22, 5, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1
Examples
T(11,2) = 3 because we have [4,3,2,2], [3,3,3,2] and [3,2,2,2,2]. Triangle starts: 1; 1,1; 2,0,1; 2,1,0,1; 3,1,0,0,1; 4,1,1,0,0,1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
g:= sum(t*x^j*product(1+x^i,i=1..j-1)/(1-t*x^j),j=1..50): gser:=simplify(series(g,x=0,17)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form # second Maple program: b:= proc(n, k, i) option remember; `if`(n<0, 0, `if`(n=0, 1, `if`(i
n, 0, b(n-i, k, i)) ))) end: T:= (n, k)-> add(b(n-(i+k)*(i+1-k)/2, k, i), i=k..n): seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Jul 06 2012 -
Mathematica
b[n_, k_, i_] := b[n, k, i] = If[n<0, 0, If[n == 0, 1, If[i
n, 0, b[n-i, k, i]]]]]; T[n_, k_] := Sum[b[n-(i+k)*(i+1-k)/2, k, i], {i, k, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
Formula
G.f.: G(t,x) = sum(tx^j*product(1+x^i, i=1..j-1)/(1-tx^j), j >=1).
Comments