cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117467 The smallest part summed over all partitions of n in which every integer from the smallest part to the largest part occurs.

Original entry on oeis.org

1, 3, 5, 8, 10, 15, 17, 22, 28, 32, 37, 49, 52, 60, 77, 83, 94, 116, 125, 146, 174, 187, 214, 257, 282, 315, 372, 410, 461, 544, 593, 669, 773, 851, 969, 1105, 1218, 1368, 1559, 1737, 1936, 2199, 2431, 2717, 3079, 3396, 3790, 4263, 4719, 5262, 5878, 6501, 7224
Offset: 1

Views

Author

Emeric Deutsch, Mar 19 2006

Keywords

Examples

			a(5)=10 because in the 5 (=A034296(5)) partitions in which every integer from the smallest to the largest part occurs, namely [5],[3,2],[2,2,1],[2,1,1,1] and [1,1,1,1,1], the sum of the smallest parts is 5+2+1+1+1=10.
		

Crossrefs

Cf. A117466.

Programs

  • Maple
    g:=sum(x^j*product(1+x^i,i=1..j-1)/(1-x^j)^2,j=1..70): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=1..60);
    # second Maple program:
    b:= proc(n, k, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(in, 0, b(n-i, k, i)))))
        end:
    T:= (n, k)-> add(b(n-(i+k)*(i+1-k)/2, k, i), i=k..n):
    a:= n-> add(T(n, k)*k, k=1..n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jun 04 2015
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n<0, 0, If[n == 0, 1, If[in, 0, b[n-i, k, i]]]]]; T[n_, k_] := Sum[b[n-(i+k)*(i+1-k)/2, k, i], {i, k, n}]; a[n_] := Sum[T[n, k]*k, {k, 1, n}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jun 29 2015, after Alois P. Heinz *)
    nmax = 100; p = 1; s = 1; Do[p *= x*(1 + x^k); s += p/(1 - x^k)^2/(1 + x^k);, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)

Formula

G.f.: sum(x^j*product(1+x^i, i=1..j-1)/(1-x^j)^2, j=1..infinity) (obtained by taking the derivative with respect to t of the g.f. G(t,x) of A117466 and setting t=1).
a(n) = Sum_{k=1..n} k * A117466(n,k).
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 16 2025