A117467 The smallest part summed over all partitions of n in which every integer from the smallest part to the largest part occurs.
1, 3, 5, 8, 10, 15, 17, 22, 28, 32, 37, 49, 52, 60, 77, 83, 94, 116, 125, 146, 174, 187, 214, 257, 282, 315, 372, 410, 461, 544, 593, 669, 773, 851, 969, 1105, 1218, 1368, 1559, 1737, 1936, 2199, 2431, 2717, 3079, 3396, 3790, 4263, 4719, 5262, 5878, 6501, 7224
Offset: 1
Keywords
Examples
a(5)=10 because in the 5 (=A034296(5)) partitions in which every integer from the smallest to the largest part occurs, namely [5],[3,2],[2,2,1],[2,1,1,1] and [1,1,1,1,1], the sum of the smallest parts is 5+2+1+1+1=10.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..5000 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Cf. A117466.
Programs
-
Maple
g:=sum(x^j*product(1+x^i,i=1..j-1)/(1-x^j)^2,j=1..70): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=1..60); # second Maple program: b:= proc(n, k, i) option remember; `if`(n<0, 0, `if`(n=0, 1, `if`(i
n, 0, b(n-i, k, i))))) end: T:= (n, k)-> add(b(n-(i+k)*(i+1-k)/2, k, i), i=k..n): a:= n-> add(T(n, k)*k, k=1..n): seq(a(n), n=1..60); # Alois P. Heinz, Jun 04 2015 -
Mathematica
b[n_, k_, i_] := b[n, k, i] = If[n<0, 0, If[n == 0, 1, If[i
n, 0, b[n-i, k, i]]]]]; T[n_, k_] := Sum[b[n-(i+k)*(i+1-k)/2, k, i], {i, k, n}]; a[n_] := Sum[T[n, k]*k, {k, 1, n}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jun 29 2015, after Alois P. Heinz *) nmax = 100; p = 1; s = 1; Do[p *= x*(1 + x^k); s += p/(1 - x^k)^2/(1 + x^k);, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)
Formula
G.f.: sum(x^j*product(1+x^i, i=1..j-1)/(1-x^j)^2, j=1..infinity) (obtained by taking the derivative with respect to t of the g.f. G(t,x) of A117466 and setting t=1).
a(n) = Sum_{k=1..n} k * A117466(n,k).
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 16 2025