cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117468 Triangle read by rows: T(n,k) is the number of partitions of n in which every integer from the smallest part to the largest part k occurs (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 3, 2, 0, 0, 1, 1, 3, 2, 1, 0, 0, 1, 1, 4, 3, 1, 0, 0, 0, 1, 1, 4, 5, 1, 1, 0, 0, 0, 1, 1, 5, 5, 2, 1, 0, 0, 0, 0, 1, 1, 5, 7, 3, 0, 1, 0, 0, 0, 0, 1, 1, 6, 9, 4, 1, 1, 0, 0, 0, 0, 0, 1, 1, 6, 10, 6, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 7, 12, 7, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 19 2006

Keywords

Comments

Also number of partitions of n having k parts and such that all parts smaller than the largest part occur only once. Row sums yield A034296. T(n,1)=T(n,n)=1. Sum_{k=1..n} k*T(n,k) = A117469(n).

Examples

			T(10,3) = 5 because we have [3,3,2,2],[3,3,2,1,1],[3,2,2,2,1],[3,2,2,1,1,1] and [3,2,1,1,1,1,1].
Triangle starts:
1;
1,1;
1,1,1;
1,2,0,1;
1,2,1,0,1;
1,3,2,0,0,1;
		

Crossrefs

Programs

  • Maple
    g:=sum(t*x^j*product(1+t*x^i,i=1..j-1)/(1-t*x^j),j=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 15 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 15 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k<1 or k>n, 0,
          `if`(n=k, 1, T(n-k, k) +T(n-k, k-1)))
        end:
    seq(seq(T(n,k), k=1..n), n=1..20);  # Alois P. Heinz, Jul 19 2016
  • Mathematica
    Table[Count[IntegerPartitions@ n, m_ /; And[SubsetQ[m, Range[Min@ m, k]], Max@ m <= k]], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Jul 19 2016 *)
    T[, 1] = 1; T[n, n_] = 1; T[n_, k_] /; 1, ] = 0; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 29 2016, adapted from Maple *)

Formula

G.f.: G(t,x) = Sum_{j>0} t*x^j*(Product_{i=1..j-1} 1+t*x^i)/(1-t*x^j).
T(n,k) = T(n-k,k) + T(n-k,k-1) where T(n,n)=1 and T(n,k)=0 when nTricia Muldoon Brown, Jul 19 2016