A117502 Triangle, row sums = A001595.
1, 1, 2, 1, 1, 3, 1, 1, 2, 5, 1, 1, 2, 3, 8, 1, 1, 2, 3, 5, 13, 1, 1, 2, 3, 5, 8, 21, 1, 1, 2, 3, 5, 8, 13, 34, 1, 1, 2, 3, 5, 8, 13, 21, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 233
Offset: 1
Examples
Row 5 of the triangle = (1, 1, 2, 3, 8); the first 5 Fibonacci terms with a deletion of F(5) = 5. First few rows of the triangle are: 1; 1, 2; 1, 1, 3; 1, 1, 2, 5; 1, 1, 2, 3, 8; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return Fibonacci(n+1); else return Fibonacci(k); fi; end; Flat(List([1..20], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 14 2019
-
Magma
[k eq n select Fibonacci(n+1) else Fibonacci(k): k in [1..n], n in [1..20]]; // G. C. Greubel, Jul 10 2019
-
Mathematica
Table[If[k==n, Fibonacci[n+1], Fibonacci[k]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
-
PARI
T(n,k) = if(k==n, fibonacci(n+1), fibonacci(k)); \\ G. C. Greubel, Jul 10 2019
-
Sage
def T(n, k): if (k==n): return fibonacci(n+1) else: return fibonacci(k) [[T(n, k) for k in (1..n)] for n in (1..20)] # G. C. Greubel, Jul 10 2019
Formula
n-th row = first n Fibonacci terms, with a deletion of F(n).
Columns of the triangle are difference terms of the array in A117501.
T(n,k) = Fibonacci(k) for k < n and T(n,n) = Fibonacci(n+1). - G. C. Greubel, Jul 10 2019
Extensions
More terms added by G. C. Greubel, Jul 10 2019
Comments