cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117502 Triangle, row sums = A001595.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 5, 1, 1, 2, 3, 8, 1, 1, 2, 3, 5, 13, 1, 1, 2, 3, 5, 8, 21, 1, 1, 2, 3, 5, 8, 13, 34, 1, 1, 2, 3, 5, 8, 13, 21, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 233
Offset: 1

Views

Author

Gary W. Adamson, Mar 23 2006

Keywords

Comments

Row sums = A001595 = (1, 3, 9, 15, 25, 41, ...).

Examples

			Row 5 of the triangle = (1, 1, 2, 3, 8); the first 5 Fibonacci terms with a deletion of F(5) = 5.
First few rows of the triangle are:
  1;
  1, 2;
  1, 1, 3;
  1, 1, 2, 5;
  1, 1, 2, 3, 8; ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return Fibonacci(n+1);
        else return Fibonacci(k);
        fi;
      end;
    Flat(List([1..20], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Jul 14 2019
  • Magma
    [k eq n select Fibonacci(n+1) else Fibonacci(k): k in [1..n], n in [1..20]]; // G. C. Greubel, Jul 10 2019
    
  • Mathematica
    Table[If[k==n, Fibonacci[n+1], Fibonacci[k]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    T(n,k) = if(k==n, fibonacci(n+1), fibonacci(k)); \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    def T(n, k):
        if (k==n): return fibonacci(n+1)
        else: return fibonacci(k)
    [[T(n, k) for k in (1..n)] for n in (1..20)] # G. C. Greubel, Jul 10 2019
    

Formula

n-th row = first n Fibonacci terms, with a deletion of F(n).
Columns of the triangle are difference terms of the array in A117501.
T(n,k) = Fibonacci(k) for k < n and T(n,n) = Fibonacci(n+1). - G. C. Greubel, Jul 10 2019

Extensions

More terms added by G. C. Greubel, Jul 10 2019