A117503 Primes among partial sums of floor(Pi*prime(k)), k=1,2,3,....
613, 6229, 7607, 9679, 46133, 61469, 69191, 120067, 211663, 285049, 316697, 354323, 402371, 444979, 481109, 490313, 532709, 993907, 1055543, 1083721, 1237487, 1329701, 1409977, 1442899, 1484671, 1656199, 1700471, 1874767
Offset: 1
Programs
-
Maple
Digits := 30 ; A117503 := proc(nmax) local a,pisum,p ; a := [] ; pisum := 0 ; p :=1 ; while nops(a) <=nmax do while true do pisum := pisum+floor(Pi*ithprime(p)) ; p := p+1 ; if isprime(pisum) then a := [op(a),pisum] ; break ; fi ; od : od : RETURN(a) ; end: a := A117503(30) ; # R. J. Mathar, Oct 26 2006
-
Mathematica
Select[Accumulate[Floor[Pi Prime[Range[800]]]],PrimeQ] (* Harvey P. Dale, Jun 06 2022 *)
-
UBASIC
10 Ct=1 20 B=nxtprm(B) 30 C=int(pi(B)) 40 D=D+C 41 print Ct,B,C,D 50 if D=prmdiv(D) then print D:stop 55 Ct=Ct+1 60 goto 20
Formula
Define the sequence s as s(j) = Sum_{k=1..j} floor(Pi*prime(k)) for j >= 1; then a(n) is the n-th prime in the sequence s.
Extensions
Edited by Jon E. Schoenfield, Sep 23 2018
Comments