cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117503 Primes among partial sums of floor(Pi*prime(k)), k=1,2,3,....

Original entry on oeis.org

613, 6229, 7607, 9679, 46133, 61469, 69191, 120067, 211663, 285049, 316697, 354323, 402371, 444979, 481109, 490313, 532709, 993907, 1055543, 1083721, 1237487, 1329701, 1409977, 1442899, 1484671, 1656199, 1700471, 1874767
Offset: 1

Views

Author

Enoch Haga, Mar 25 2006

Keywords

Comments

Modeled on the same concept as cumulative sums of squared primes in A098562.

Crossrefs

Programs

  • Maple
    Digits := 30 ; A117503 := proc(nmax) local a,pisum,p ; a := [] ; pisum := 0 ; p :=1 ; while nops(a) <=nmax do while true do pisum := pisum+floor(Pi*ithprime(p)) ; p := p+1 ; if isprime(pisum) then a := [op(a),pisum] ; break ; fi ; od : od : RETURN(a) ; end: a := A117503(30) ; # R. J. Mathar, Oct 26 2006
  • Mathematica
    Select[Accumulate[Floor[Pi Prime[Range[800]]]],PrimeQ] (* Harvey P. Dale, Jun 06 2022 *)
  • UBASIC
    10 Ct=1
    20 B=nxtprm(B)
    30 C=int(pi(B))
    40 D=D+C
    41 print Ct,B,C,D
    50 if D=prmdiv(D) then print D:stop
    55 Ct=Ct+1
    60 goto 20

Formula

Define the sequence s as s(j) = Sum_{k=1..j} floor(Pi*prime(k)) for j >= 1; then a(n) is the n-th prime in the sequence s.

Extensions

Edited by Jon E. Schoenfield, Sep 23 2018

A117528 Prime at which the cumulative sum in A117527 is prime.

Original entry on oeis.org

2, 3, 13, 41, 43, 109, 137, 167, 181, 199, 307, 373, 421, 491, 587, 661, 1009, 1097, 1117, 1373, 1471, 1483, 1601, 1607, 1787, 1913, 2053, 2089, 2203, 2267, 2591, 2819, 2953, 3191, 3361, 3623, 3691, 3779, 3877, 4051
Offset: 1

Views

Author

Enoch Haga, Mar 25 2006

Keywords

Comments

At the twin primes 41 and 43, we obtain consecutive prime integer sums of 641 and 757.

Examples

			In a(5)=4007, multiplication of the prime 109*e resulted in the int sum 296. When added to previous sums, the total came to 4007, a prime.
		

Crossrefs

Programs

  • UBASIC
    10 Ct=1
    20 B=nxtprm(B)
    22 E=#e
    30 C=int(B*E)
    40 D=D+C
    41 print Ct,B,C,D
    50 if D=prmdiv(D) then print D:stop
    55 Ct=Ct+1
    60 goto 20

Formula

Multiply consecutive primes by e, take integer, sum until a prime sum is reached.
Showing 1-2 of 2 results.