A117506 Irregular triangle read by rows: dimensions of the irreducible representations of the symmetric group S_n.
1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 5, 6, 5, 4, 1, 1, 5, 9, 5, 10, 16, 5, 10, 9, 5, 1, 1, 6, 14, 14, 15, 35, 21, 21, 20, 35, 14, 15, 14, 6, 1, 1, 7, 20, 28, 14, 21, 64, 70, 56, 42, 35, 90, 56, 70, 14, 35, 64, 28, 21, 20, 7, 1
Offset: 0
Examples
[1]; [1]; [1, 1]; [1, 2, 1]; [1, 3, 2, 3, 1]; [1, 4, 5, 6, 5, 4, 1]; [1, 5, 9, 5, 10, 16, 5, 10, 9, 5, 1];... a(4,4)=3 because the 4th partition of n=4 in A-St order is [2,1,1], and H(4,4)=(4!*2!*1!)/Vandermonde([4,2,1]) = (4!*2)/6 =4*2, hence 4!/H(4,4) = 3. a(4,4)=3 because the hook lengths of the Young diagram of [2,1,1] are [4, 1; 2; 1], hence 4!/(4*1*2*1) = 3. The sum of the squared entries of each row gives n!: n = 5: 2*(1^1 + 4^2 + 5^2) + 6^2 = 120 = 5!. - _Wolfdieter Lang_, Oct 09 2015
References
- G. de B. Robinson (ed.), The Collected Papers of Alfred Young 1873-1940, University of Toronto Press, 1977.
- G. B. Wybourne, Symmetry principles and atomic spectroscopy, Wiley, New York, 1970, p. 9.
Links
- Alois P. Heinz, Rows n = 0..30, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, pp. 831-2.
- Kenneth Glass and Chi-Keung Ng, A Simple Proof of the Hook Length Formula, Am. Math. Monthly 111 (2004) 700 - 704.
- Graham H. Hawkes, An Elementary Proof of a Formula for SYT, arXiv preprint arXiv:1310.5919 [math.CO], 2013-2014.
- Wolfdieter Lang, First 15 rows.
- Eric Weisstein's World of Mathematics, Hook length formula.
- Doron Zeilberger, Andre's Reflection Proof Generalized to the Many-Candidate Ballot Problem, Discrete Mathematics 44 (1983) 325-326.
- Index entries for sequences related to groups
Programs
-
Maple
h:= l-> (n-> mul(mul(1+l[i]-j+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): g:= (n, i, l)-> `if`(n=0 or i=1, [h([l[], 1$n])], [g(n, i-1, l)[], g(n-i, min(n-i, i), [l[], i])[]]): T:= n-> map(x-> n!/x, g(n$2, []))[]: seq(T(n), n=0..10); # Alois P. Heinz, Nov 05 2015
-
Mathematica
h[l_List] := Function[n, Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]][Length[l]]; g[n_, i_, l_List] := If[n==0 || i==1, Join[{h[Join[l, Array[1&, n]]]}], If[i<1, {}, Join[{g[n, i-1, l]}, If[i>n, {}, g[n-i, i, Join[l, {i}]]]]]] // Flatten; T[n_] := n!/ g[n, n, {}]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
Formula
a(n,k) = n!/H(n,k) with H(n,k):= Product_{i=1..m(n,k)} (x_i)!/Det(x_i^(m(n,k)-j)) with the Vandermonde determinant for the variables x_i:=lambda(n,k)_i + m(n,k)-i, i,j=1..m(n,k) if m(n,k) is the number of parts of the k-th partition of n, called lambda(n,k), in the A-St order (see above). Lambda(n,k)_i denotes the i-th part of the partition lambda(n,k), sorted in decreasing order (this is the reverse of the A-St notation).
a(n,k) = n!/Product_{j=1..n}(h(n,k,j) with the hook numbers h(n,k,j) of the Young diagram of the partition lambda(n,k) in the A-St order. See the link for 'hook length formula'.
Extensions
Row n=0 prepended by Alois P. Heinz, Nov 05 2015
Comments