A117511 Triangular numbers for which the sum of the digits equals the sum of the digits of the next triangular number.
36, 153, 2556, 3240, 4851, 5778, 9045, 11628, 13041, 14535, 17766, 19503, 33930, 41328, 46665, 49455, 52326, 71253, 74691, 81810, 85491, 93096, 109278, 122265, 131328, 140715, 145530, 160461, 170820, 181503, 186966, 192510, 203841, 252405, 258840, 265356
Offset: 1
Examples
153 is in the sequence because (1) 153 is triangular number a(18), triangular number a(19)=171 and (2) 1+5+3=1+7+1.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Transpose[With[{c=Partition[Accumulate[Range[2000]],2,1]}, Select[c, Total[IntegerDigits[First[#]]]==Total[IntegerDigits[Last[#]]]&]]] [[1]] (* Harvey P. Dale, Oct 18 2011 *) (#(#+1))/2&/@(SequencePosition[Total[IntegerDigits[#]]&/@Accumulate[ Range[ 1000]],{x_,x_}][[All,1]]) (* Harvey P. Dale, Mar 02 2022 *)
Formula
s(a(n)) = s(a(n+1)), where s(n) is the sum of the digits of n.
Extensions
Corrected by Harvey P. Dale, Oct 18 2011
Comments