A117560 a(n) = n*(n^2 - 1)/2 - 1.
2, 11, 29, 59, 104, 167, 251, 359, 494, 659, 857, 1091, 1364, 1679, 2039, 2447, 2906, 3419, 3989, 4619, 5312, 6071, 6899, 7799, 8774, 9827, 10961, 12179, 13484, 14879, 16367, 17951, 19634, 21419, 23309, 25307, 27416, 29639, 31979, 34439, 37022, 39731, 42569
Offset: 2
Examples
a(3) = 29 because the antimagic constant of an antimagic square of order 4 must be at least 29 (see comments).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..5000
- Eric Weisstein's World of Mathematics, Antimagic Square.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n^2-1)/2 - 1: n in [2..50]]; // Vincenzo Librandi, Jun 20 2011
-
Mathematica
Table[n*(n^2-1)/2 - 1, {n, 2, 50}]
Formula
a(n) = n*(n^2 - 1)/2 - 1.
G.f.: x^2*(2 + 3*x - 3*x^2 + x^3)/(1-x)^4. - Colin Barker, Mar 29 2012
From Elmo R. Oliveira, Aug 19 2025: (Start)
E.g.f.: 1 + x + (1 + x)*(-2 + 2*x + x^2)*exp(x)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 6. (End)
Comments