A117620 Start with x=4/3; repeatedly apply the map x -> (x^2) ceiling(x); sequence gives numerators of the resulting sequence of fractions.
4, 32, 4096, 285212672, 3536203627938199896064, 27735467127437590594631628902073909856749798039036448735232
Offset: 1
Examples
a(4) = 285212672 because (4096/81)^2 * ceiling(4096/81) = (4096/81)^2 * ceiling(4096/81) = * ceiling(50.5679012) = (16777216/6561) * 51 = 285212672/2187.
Links
- Robert Israel, Table of n, a(n) for n = 1..8
- J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
Programs
-
Maple
x[1]:= 4/3: for n from 1 to 9 do x[n+1]:= x[n]^2*ceil(x[n]) od: seq(numer(x[i]),i=1..10); # Robert Israel, Jun 15 2016
Extensions
Erroneous term removed by Giovanni Resta, Jun 15 2016
Comments