cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117658 Number of solutions to x^(k+1) = x^k mod n for some k >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 2, 6, 2, 4, 4, 9, 2, 8, 2, 6, 4, 4, 2, 10, 6, 4, 10, 6, 2, 8, 2, 17, 4, 4, 4, 12, 2, 4, 4, 10, 2, 8, 2, 6, 8, 4, 2, 18, 8, 12, 4, 6, 2, 20, 4, 10, 4, 4, 2, 12, 2, 4, 8, 33, 4, 8, 2, 6, 4, 8, 2, 20, 2, 4, 12
Offset: 1

Views

Author

Steven Finch, Apr 11 2006

Keywords

Comments

If n is prime, then the solutions are x = 0, 1, and so a(n) = 2. - Michael B. Porter, Jul 08 2016
The set of solutions is independent of the choice of k. - Michael B. Porter, Jul 08 2016

Examples

			For n = 10, using k = 1, the solutions are x = 0, 1, 5, and 6, so a(10) = 4. - _Michael B. Porter_, Jul 08 2016
		

Crossrefs

Cf. A117659.

Programs

  • Maple
    f:= proc(n) local F,f;
        F:= ifactors(n)[2];
        mul(1 + f[1]^(f[2]-1), f = F)
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 06 2016
  • Mathematica
    a[n_] := Module[{F, f}, F = FactorInteger[n]; Product[1 + f[[1]]^(f[[2]] - 1), {f, F}]]; a[1] = 1; Array[a, 100] (* Jean-François Alcover, Nov 05 2016, after Robert Israel *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i,1]^(f[i,2]-1));} \\ Amiram Eldar, Sep 21 2023

Formula

a(n) = Sum_{k=1..n} floor((k^n-k^(n-1))/n)-floor((k^n-k^(n-1)-1)/n). - Anthony Browne, Jul 06 2016
Multiplicative with a(p^e) = 1 + p^(e-1) for primes p. - Robert Israel, Jul 06 2016
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s - 1/p^(2*s)). - Amiram Eldar, Sep 21 2023