A117725 Zeroless numbers for which the sum of the digits and the product of the digits are both Fibonacci numbers.
1, 2, 3, 5, 8, 11, 12, 21, 111, 113, 131, 311, 1112, 1115, 1121, 1124, 1142, 1151, 1211, 1214, 1241, 1412, 1421, 1511, 2111, 2114, 2141, 2411, 4112, 4121, 4211, 5111, 11111, 11137, 11173, 11222, 11289, 11298, 11317, 11371, 11713, 11731, 11829, 11892, 11928
Offset: 1
Examples
18192 is a term because the sum of its digits is 1+8+1+9+2 = 21, the product of its digits is 1*8*1*9*2 = 144 and both 21 and 144 are Fibonacci numbers.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- David A. Corneth, PARI program
Programs
-
Mathematica
isFibonacci[x_]:=MemberQ[Array[Fibonacci,2x],x];DeleteCases[ParallelTable[If[And[isFibonacci[Times@@IntegerDigits[n]],isFibonacci[Total[IntegerDigits[n]]]],n,a],{n,1,15000}],a] (* J.W.L. (Jan) Eerland, Jan 03 2024 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8); \\ A000045 isok(k) = my(d=digits(k)); vecmin(d) && isfib(vecsum(d)) && isfib(vecprod(d)); \\ Michel Marcus, Jan 03 2024
-
PARI
\\ See PARI program in links
Extensions
a(45) from J.W.L. (Jan) Eerland, Jan 03 2024
Name clarified by Michel Marcus, Jan 03 2024