A051109 Expansion of g.f. (1+2*x+5*x^2)/(1-10*x^3).
1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000, 2000000, 5000000, 10000000, 20000000, 50000000, 100000000, 200000000, 500000000, 1000000000, 2000000000, 5000000000, 10000000000, 20000000000, 50000000000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,10).
Crossrefs
Cf. A117727.
Programs
-
Magma
[(1 +(n mod 3)^2)*10^Floor(n/3): n in [0..40]]; // G. C. Greubel, Jul 23 2023
-
Mathematica
a[n_]:= a[n]= If[n<3, Fibonacci[2n+1], 10*a[n-3]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 23 2023 *)
-
Python
print( [ ((n % 3) ** 2 + 1) * 10**int(n/3) for n in range(100)] )
-
SageMath
[(1 +(n%3)^2)*10^(n//3) for n in range(41)] # G. C. Greubel, Jul 23 2023
Formula
a(3*n) = 10^n, a(3*n+1) = 2*10^n, a(3*n+2) = 5*10^n.
a(n) = ( 1 + (n mod 3)^2 )*10^floor(n/3). - Justin L. Brown (jlbrown(AT)neo.tamu.edu), Jun 17 2004
G.f.: (1+2*x+5*x^2)/(1-10*x^3). - Philippe Deléham, Apr 08 2013
a(n) = 10*a(n-3) with n>2, a(0)=1, a(1)=2, a(2)=5. - Philippe Deléham, Apr 08 2013
From Amiram Eldar, Jul 27 2023: (Start)
Sum_{n>=0} 1/a(n) = 17/9.
Sum_{n>=0} (-1)^n/a(n) = 7/11. (End)
Extensions
Second formula corrected by Peter C. Lauterbach, Nov 12 2010
New name using g.f. from Joerg Arndt, Jul 23 2023
Comments