cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117728 A117726(n)/2.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 2, 4, 5, 4, 6, 4, 4, 8, 4, 4, 8, 6, 6, 8, 8, 4, 6, 8, 5, 12, 8, 4, 12, 8, 6, 8, 8, 8, 12, 10, 4, 12, 8, 8, 16, 8, 6, 12, 12, 8, 10, 8, 9, 14, 12, 8, 12, 16, 8, 16, 8, 4, 18, 8, 12, 16, 10, 8, 16, 16, 6, 16, 16, 8, 14, 12, 8, 20, 14, 12, 16, 8, 10, 16, 17, 8, 18, 16, 8, 20, 12
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2006

Keywords

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( sum(k=1, sqrtint(4*n + 9)\2, x^(k^2 + k - 2) / (1 - x^(2*k - 1))^2, A) / sum(k=1, sqrtint(4*n + 1)\2 + 1, x^(k^2 - k), A), n))}; /* Michael Somos, Jul 05 2015 */

Formula

a(4*n) = 2 * a(n). a(4*n + 1) = A045834(n). a(4*n + 2) = A005884(n). - Michael Somos, Jul 05 2015
G.f.: (Sum_{k>0} x^(k^2 + k - 1) / (1 - x^(2*k - 1))^2) / (Sum_{k>0} x^(k*(k - 1))). - Michael Somos, Jul 05 2015