cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A181072 Consider 1-D random walk with jumps up to the fourth neighbor, i.e., set of possible jumps is {-4,-3,-2,-1,+1,+2,+3,+4}. Sequence gives number of paths of length n ending at origin.

Original entry on oeis.org

1, 0, 8, 36, 296, 2030, 15200, 112308, 845320, 6386076, 48582438, 371138460, 2846769992, 21905812786, 169041544568, 1307602672376, 10136307859080, 78721657307320, 612391634798156, 4770987007606224, 37219155177139126, 290702353768374570, 2273036878855399720
Offset: 0

Views

Author

Sergey Perepechko, Jan 23 2011

Keywords

Crossrefs

Programs

  • Maple
    a:=n->add(binomial(n,k)*(add(binomial(n,m)*binomial(n,2*k+2*n-5*m),m=ceil((2*k+n)/5)..floor(2*(n+k)/5))),k=0..n);

Formula

Exact formula:
a(n) = sum(binomial(n, k) * (sum(binomial(n, m) * binomial(n, 2*k + 2*n - 5*m), m = ceiling((2*k + n)/5)..floor(2*(n+k)/5))), k=0..n).
Recurrence:
128000000 * (2 * n + 1) * (n + 3) * (n + 2) * (n + 1) * a(n) - 6400000 * (n + 3) * (n + 2) * (99 * n^2 + 185 * n + 50) * a(n + 1) -16000 * (n + 3) * (36954 * n^3 + 183733 * n^2 + 299913 * n + 167000) * a(n + 2) - 800 * (-1263000 + 505346 * n + 1523457 *n^2 + 630883 * n^3 + 76989 * n^4) * a(n + 3) + 80 * (71669625 + 72733160 * n + 28214529 * n^2 + 5186629 * n^3 + 389781 * n^4) * a(n + 4) + 8 * (172598700 + 157978087 * n + 52620462 * n^2 + 7605827 * n^3 + 403092 * n^4) * a(n + 5) - 4 * (92866218 + 67549595 * n + 19555350 * n^2 + 2588005 * n^3 + 129192 * n^4) * a(n + 6) - 2 * (52403820 + 30999812 * n + 6869373 * n^2 + 675772 * n^3 + 24903 * n^4) * a(n + 7) + (n + 8) * (2763 * n^3 + 53150 * n^2 + 321017 * n + 579030) * a(n + 8) + 8 * (4 * n + 35) * (n + 9) * (4 * n + 33) * (2 * n + 17) * a(n + 9) = 0
Algebraic equation for generating function:
- (400 * x^5 + 6240 * x^4 + 20376 * x^3 + 2200 * x^2 + 9 * x - 48)^2 * x^2 + 8 * (8 * x - 1) * (800000 * x^11 + 11760000 * x^10 + 78809600 * x^9 + 443644960 * x^8 + 2350482624 * x^7 + 155829416 * x^6 - 139281808 * x^5 - 52419090 * x^4 + 2482459 * x^3 + 1367208 * x^2 - 83328 * x - 2048) * g(x)^2 * x - 4 * (28000000 * x^11 + 40800000 * x^10 + 1233968000 * x^9 - 3953176000 * x^8 + 75242361184 * x^7 + 11694517328 * x^6 - 7030304072 * x^5 - 1845621940 * x^4 + 821550463 * x^3 + 67315608 * x^2 - 30631040 * x + 1921024) * (8 * x - 1)^2 * g(x)^4 * x + 8 * (140000000 * x^12 - 1194000000 * x^11 + 11067600000 * x^10 - 78000428000 * x^9 + 281516359680 * x^8 + 139037614344 * x^7 - 34486520616 * x^6 - 12507324570 * x^5 + 2600603973 * x^4 - 136469008 * x^3 - 136037760 * x^2 + 31825920 * x - 2097152) * (8 * x - 1)^3 * g(x)^6 - 2 * (3500000000 * x^12 - 53400000000 * x^11 + 453587200000 * x^10 - 2350791440000 * x^9 + 3738567060000 * x^8 + 4916593964640 * x^7 + 405974360448 * x^6 - 629094250008 * x^5 - 20410907037 * x^4 + 50599387568 * x^3 - 906930048 * x^2 - 1473314816 * x + 142606336) * (8 * x - 1)^4 * g(x)^8 + 8 * (500 * x^3 - 1200 * x^2 - 1227 * x - 256) * (7000000 * x^9 - 114300000 * x^8 + 798610000 * x^7 - 2019518000 * x^6 - 1531462308 * x^5 + 192490034 * x^4 + 195987449 * x^3 - 14097912 * x^2 - 7290368 * x + 917504) * (8 * x - 1)^5 * g(x)^10 - 4 * (70000 * x^6 - 990000 * x^5 + 4067760 * x^4 + 1850948 * x^3 - 408249 * x^2 - 120408 * x + 22528) * (500 * x^3 - 1200 * x^2 - 1227 * x - 256)^2 * (8 * x - 1)^6 * g(x)^12 + 8 * (100 * x^3 - 870 * x^2 - 177 * x + 64) * (500 * x^3 - 1200 * x^2 - 1227 * x - 256)^3 * (8 * x - 1)^7 * g(x)^14 - (500 * x^3 - 1200 * x^2 - 1227 * x - 256)^4 * (8 * x - 1)^8 * g(x)^16 = 0
Showing 1-1 of 1 results.