cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A171128 A117852*A130595 as lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 19, 28, 18, 4, 1, 51, 95, 70, 30, 5, 1, 141, 306, 285, 140, 45, 6, 1, 393, 987, 1071, 665, 245, 63, 7, 1, 1107, 3144, 3948, 2856, 1330, 392, 84, 8, 1, 3139, 9963, 14148, 11844, 6426, 2394, 588, 108, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2009

Keywords

Comments

Mirror image of triangle in A135091.
Exponential Riordan array [exp(x)*Bessel_I(0,2*x), x] = A007318 * A109187. - Peter Bala, Feb 12 2017

Examples

			Triangle begins:
   1
   1  1
   3  2  1
   7  9  3 1
  19 28 18 4 1
  ...
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator begins
      0
      1    0
      2    2     0
      0    6     3     0
     -6    0    12     4     0
      0  -30     0    20     5   0
     80    0   -90     0    30   6   0
      0  560     0  -210     0  42   7  0
  -2310    0  2240     0  -420   0  56  8  0
  ....
and equals the generalized exponential Riordan array [x + log(Bessel_I(0,2*x)), x], and so has integer entries. (End)
		

Crossrefs

A000984 (row sums), A135091 (row reversed). Cf. A002426, A117852, A130595, A109187.

Programs

  • Mathematica
    A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[ Binomial[n, k]*A002426[n - k], {n, 0, 99}, {k, 0, n} ]//Flatten (* G_. C. Greubel_, Mar 07 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n), A104454(n) for x = -1,0,1,2,3,4,5,6 respectively.
T(n,k) = binomial(n,k)*A002426(n-k). - Philippe Deléham, Dec 12 2009
From Peter Bala, Feb 12 2017: (Start)
T(n,k) = Sum_{j = 0..floor((n-k)/2)} n!/((n-k-2*j)!*j!^2*k!).
T(n,k) = n/k*T(n-1,k-1) with T(n,0) = A002426(n).
(n - k)^2*T(n,k) = n*(2*n - 2*k - 1)*T(n-1,k) + 3*n*(n - 1)*T(n-2,k).
O.g.f. = 1/sqrt((1 - (1 + t)*z)^2 - 4*z^2) = 1 + (1 + t)*z + (3 + 2*t + t^2)*z^2 + (7 + 9*t + 3*t^2 + t^3 )*z^3 + ....
E.g.f. Bessel_I(0,2*x) * exp((1 + t)*x) = 1 + (1 + t)*z + (3 + 2*t + t^2)*z^2/2! + (7 + 9*t + 3*t^2 + t^3 )*z^3/3! + ....
n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)*(1 + t)^(n-2*k) = coefficient of x^n in the expansion of (1 + (1 + t)*x + x^2)^n.
The polynomials R(n, t - 1) are the row polynomials of A109187.
d/dt(R(n,t)) = n*R(n-1,t).
Moment representation on a finite interval: R(n,t) = 1/Pi * Integral_{x = t-1 .. t+3} x^n/sqrt((t + 3 - x)*(x - t + 1)) dx.
The zeros of the row polynomials appear to lie on the vertical line Re(z) = -1 in the complex plane, and the zeros of R(n,t) and R(n+1,t) appear to interlace along this line.
(End)
Showing 1-1 of 1 results.