cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117876 Primes p=prime(k) of level (1,2), i.e., such that A118534(k) = prime(k-2).

Original entry on oeis.org

23, 47, 73, 233, 353, 647, 1097, 1283, 1433, 1453, 1493, 1613, 1709, 1889, 2099, 2161, 2383, 2621, 2693, 2713, 3049, 3533, 3559, 3923, 4007, 4133, 4643, 4793, 4937, 5443, 5743, 6101, 7213, 7309, 7351, 7561, 7621, 7829, 8179, 8237, 8719, 8849, 9109, 9343, 9467
Offset: 1

Views

Author

Rémi Eismann, May 02 2006

Keywords

Comments

If prime(k) has level 1 in A117563, and if 2*prime(k) - prime(k+1) = prime(k-i), then we say that prime(k) has level (1,i). Sequence gives primes of level (1,2).
The prime p(4)=7 cannot be decomposed into weight*level+gap (<=> A117563(4)=0 <=> A118534(4)=0 <=> A117078(4)=0). For all other primes, an equivalent definition would be: Primes p(k) such that 2*p(k) - p(k+1) = p(k-2). - Rémi Eismann and M. F. Hasler, Nov 08 2009

Examples

			29 = 2*23 - 17, 2179 = 2*2161 - 2143, 5749 = 2*5743 - 5737.
		

Crossrefs

Programs

  • Mathematica
    With[{m = 2}, Prime@ Select[Range[m + 1, 1200], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    for(n=5,9999, 2*prime(n)-prime(n+1) == prime(n-2) & print1(prime(n),",")) \\ M. F. Hasler, Nov 08 2009
    
  • PARI
    is_A117876(p)={ isprime(p) & isprime(d=2*p-nextprime(p+2)) & d == precprime(precprime(p-2)-2) & p>7 } \\ M. F. Hasler, Nov 08 2009
    
  • Scheme
    (define (A117876 n) (A000040 (A066495 (+ 1 n)))) ;; Antti Karttunen, Nov 30 2013

Formula

a(n) = A000040(A066495(n+1)). - Antti Karttunen, Nov 30 2013

Extensions

Edited by N. J. A. Sloane, May 14 2006
More terms from Rémi Eismann, May 25 2006
Definition corrected and terms double-checked by M. F. Hasler, Nov 08 2009