cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117881 First semiprime after Pi^n.

Original entry on oeis.org

4, 4, 10, 33, 106, 309, 965, 3022, 9489, 29813, 93649, 294209, 924271, 2903678, 9122173, 28658147, 90032221, 282844574, 888582413, 2791563955, 8769956797, 27551631845, 86556004193, 271923706897, 854273519921, 2683779414319
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

Pi and semiprime analog of A074496 First prime after e^n. Lim_{n->infinity} a(n+1)/a(n) = Pi. See also A000796 Decimal expansion of Pi. There are numbers where floor(Pi^n) is itself a semiprime, as with floor(Pi^2) = 9, floor(Pi^6) = 961 = 31^2, floor(Pi^9) = 29809 = 13 * 2293, floor(Pi^25) = 2683779414317 = 5749 * 466825433.

Examples

			a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
		

Crossrefs

Programs

  • Mathematica
    fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]

Formula

a(n) = min{s in A001358 and s > Pi^n}.