cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A117891 Numbers k such that both the number of non-leading 0's in the binary representation of k and the number of 1's in the binary representation of k divide k.

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 24, 36, 40, 42, 48, 55, 60, 80, 84, 108, 110, 120, 126, 132, 144, 156, 172, 180, 184, 192, 204, 212, 216, 222, 228, 232, 240, 246, 252, 256, 276, 300, 318, 324, 336, 340, 360, 366, 378, 414, 420, 438, 440, 444, 460, 462, 474, 480, 486
Offset: 1

Views

Author

Leroy Quet, Mar 30 2006

Keywords

Examples

			24 is 11000 in binary. This binary representation has three 0's and 3 divides 24. Also, the binary representation has two 1's and 2 also divides 24. So 24 is in the sequence.
		

Crossrefs

Cf. A049445, A117890. Includes A001146.

Programs

  • C
    #include 
    int main(int argc, char *argv[]) { for(int n=1; n< 500 ; n++) { int digs[2] ; int nshifted=n ; digs[0]=digs[1]=0 ; while(nshifted) { digs[ nshifted & 1]++ ; nshifted >>= 1 ; } if ( digs[0] && digs[1]) if( ( n % digs[0]) == 0 && (n %digs[1]) ==0) printf("%d,",n) ; } } /* R. J. Mathar, Apr 03 2006 */
  • Maple
    filter:= proc(n) local L, x,m;
      L:= convert(n,base,2);
      x:= convert(L,`+`);
      m:= nops(L);
      x < m and n mod x = 0 and n mod (m-x) = 0
    end proc:
    select(filter, [$1..1000]);
  • Mathematica
    bdQ[n_]:=Module[{idn2=IntegerDigits[n,2],x,y},x=Count[idn2,1];y=Count[ idn2,0]; If[x==0,x=n+1];If[y==0,y=n+1];And@@Divisible[n,{x,y}]]; Select[ Range[500],bdQ] (* Harvey P. Dale, Jan 22 2012 *)

Extensions

More terms from R. J. Mathar, Apr 03 2006
Showing 1-1 of 1 results.