cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117894 Triangle, row sums = Pell numbers, A000129.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 3, 5, 1, 4, 4, 8, 12, 1, 5, 5, 11, 19, 29, 1, 6, 6, 14, 26, 46, 70, 1, 7, 7, 17, 33, 63, 111, 169, 1, 8, 8, 20, 40, 80, 152, 268, 408, 1, 9, 9, 23, 47, 97, 193, 367, 647, 985
Offset: 0

Views

Author

Gary W. Adamson, Mar 30 2006

Keywords

Comments

Deleting the right border gives triangle A117895.

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 2, 2;
  1, 3, 3,  5;
  1, 4, 4,  8, 12;
  1, 5, 5, 11, 19, 29;
  1, 6, 6, 14, 26, 46,  70;
  1, 7, 7, 17, 33, 63, 111, 169;
...
Row 4 of A117584 = (1, 4, 7, 12). Difference terms (1, 3, 3, 5) = row 4 of A117894.
		

Crossrefs

Programs

  • Magma
    Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >;
    [k eq 0 select 1 else (k-n)*Pell(k+1) + (3*n-3*k+1)*Pell(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2021
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, (k-n)*Fibonacci[k+1, 2] + (3*n-3*k+1)*Fibonacci[k, 2]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    def A117894(n,k): return 1 if (k==0) else (k-n)*P(k+1) + (3*n-3*k+1)*P(k)
    flatten([[A117894(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021

Formula

Rows are composed of difference terms of triangle A117584.
Rows sum to Pell numbers, A000129.
From G. C. Greubel, Sep 27 2021: (Start)
T(n, k) = (k-n)*A000129(k+1) + (3*n-3*k+1)*A000129(k) with T(n,0) = 1.
T(n, k) = A117584(n+1, k+1) - A117584(n+1, k) with T(n, 0) = 1.
T(n, 1) = n for n >= 1.
T(n, 2) = n for n >= 2.
T(n, n) = [n=0] + A000129(n).
T(n, n-1) = 2*[n=0] + A078343(n). (End)