A117894 Triangle, row sums = Pell numbers, A000129.
1, 1, 1, 1, 2, 2, 1, 3, 3, 5, 1, 4, 4, 8, 12, 1, 5, 5, 11, 19, 29, 1, 6, 6, 14, 26, 46, 70, 1, 7, 7, 17, 33, 63, 111, 169, 1, 8, 8, 20, 40, 80, 152, 268, 408, 1, 9, 9, 23, 47, 97, 193, 367, 647, 985
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 1, 2, 2; 1, 3, 3, 5; 1, 4, 4, 8, 12; 1, 5, 5, 11, 19, 29; 1, 6, 6, 14, 26, 46, 70; 1, 7, 7, 17, 33, 63, 111, 169; ... Row 4 of A117584 = (1, 4, 7, 12). Difference terms (1, 3, 3, 5) = row 4 of A117894.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >; [k eq 0 select 1 else (k-n)*Pell(k+1) + (3*n-3*k+1)*Pell(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2021
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, (k-n)*Fibonacci[k+1, 2] + (3*n-3*k+1)*Fibonacci[k, 2]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
-
Sage
def P(n): return lucas_number1(n, 2, -1) def A117894(n,k): return 1 if (k==0) else (k-n)*P(k+1) + (3*n-3*k+1)*P(k) flatten([[A117894(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021
Formula
Rows are composed of difference terms of triangle A117584.
Rows sum to Pell numbers, A000129.
From G. C. Greubel, Sep 27 2021: (Start)
T(n, 1) = n for n >= 1.
T(n, 2) = n for n >= 2.
T(n, n) = [n=0] + A000129(n).
T(n, n-1) = 2*[n=0] + A078343(n). (End)
Comments