A117896 Number of perfect powers between consecutive squares n^2 and (n+1)^2.
0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1
Keywords
Examples
a(5)=2 because powers 27 and 32 are between 25 and 36.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- J. H. Loxton, Some problems involving powers of integers, Acta Arith., 46 (1986), pp. 113-123.
- C. L. Stewart, On heights of multiplicatively dependent algebraic numbers, Acta Arith. 133 (2008), pp. 97-108.
- J. Turk, Multiplicative properties of integers in short intervals, Proc. Kon. Ned. Akad. Wet. (A) 83 (1980), pp. 429-436.
Crossrefs
Programs
-
Mathematica
nn=151^2; powers=Join[{1}, Union[Flatten[Table[n^i, {i,Prime[Range[PrimePi[Log[2,nn]]]]}, {n,2,nn^(1/i)}]]]]; t=Table[0,{Sqrt[nn]-1}]; Do[n=Floor[Sqrt[i]]; If[i>n^2, t[[n]]++], {i,powers}]; t (* revised, T. D. Noe, Apr 19 2011 *)
-
PARI
a(n)=my(k);-sum(e=3,2*log(n+1)\log(2),k=round((n+1/2)^(2/e))^e;if(n^2
Charles R Greathouse IV, Dec 19 2011
Formula
Trivially, a(n) << log n/log log n. Turk gives a(n) << sqrt(log n) and Loxton improves this to a(n) <= exp(40 sqrt(log log n log log log n)). Stewart improves the constant from 40 to 30 and conjectures that a(n) < 3 for all but finitely many n. - Charles R Greathouse IV, Dec 11 2012
Comments