cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117896 Number of perfect powers between consecutive squares n^2 and (n+1)^2.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

T. D. Noe, Mar 31 2006, Feb 15 2010

Keywords

Comments

a(n)=2 only 14 times for n^2 < 2^63. What is the least n such that a(n)=3? Is a(n) bounded?

Examples

			a(5)=2 because powers 27 and 32 are between 25 and 36.
		

Crossrefs

Cf. A001597 (perfect powers), A014085 (primes between squares), A097055, A097056, A117934.

Programs

  • Mathematica
    nn=151^2; powers=Join[{1}, Union[Flatten[Table[n^i, {i,Prime[Range[PrimePi[Log[2,nn]]]]}, {n,2,nn^(1/i)}]]]]; t=Table[0,{Sqrt[nn]-1}]; Do[n=Floor[Sqrt[i]]; If[i>n^2, t[[n]]++], {i,powers}]; t (* revised, T. D. Noe, Apr 19 2011 *)
  • PARI
    a(n)=my(k);-sum(e=3,2*log(n+1)\log(2),k=round((n+1/2)^(2/e))^e;if(n^2Charles R Greathouse IV, Dec 19 2011

Formula

Trivially, a(n) << log n/log log n. Turk gives a(n) << sqrt(log n) and Loxton improves this to a(n) <= exp(40 sqrt(log log n log log log n)). Stewart improves the constant from 40 to 30 and conjectures that a(n) < 3 for all but finitely many n. - Charles R Greathouse IV, Dec 11 2012