A117918 Difference row triangle of the Pell sequence.
1, 1, 2, 2, 3, 5, 2, 4, 7, 12, 4, 6, 10, 17, 29, 4, 8, 14, 24, 41, 70, 8, 12, 20, 34, 58, 99, 169, 8, 16, 28, 48, 82, 140, 239, 408, 16, 24, 40, 68, 116, 198, 338, 577, 985, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378, 32, 48, 80, 136, 232, 396, 676, 1154, 1970, 3363, 5741
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 2; 2, 3, 5; 2, 4, 7, 12; 4, 6, 10, 17, 29; 4, 8, 14, 24, 41, 70; 8, 12, 20, 34, 58, 99, 169; ...
References
- Raymond Lebois, "Le théorème de Pythagore et ses implications", p. 123, Editions PIM, (1979).
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
Pell:= func< n | Round(((1+Sqrt(2))^n -(1-Sqrt(2))^n)/(2*Sqrt(2))) >; T:= func< n,k | (&+[ (-1)^j*Binomial(n-k,j)*Pell(n-j): j in [0..n-k]]) >; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 23 2021
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1, 2^Floor[(n-1)/2], T[n, k-1] + T[n-1, k-1]]; Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 22 2021 *)
-
Sage
def A117918(n,k): return sum( (-1)^j*binomial(n-k, j)*lucas_number1(n-j, 2,-1) for j in (0..n) ) flatten([[A117918(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021
Formula
Difference rows of the Pell sequence A000129 starting (1, 2, 5, 12, ...) become the diagonals of the triangle.
T(n, n) = A000129(n).
From G. C. Greubel, Oct 23 2021: (Start)
T(n, k) = T(n, k-1) + T(n-1, k-1) with T(n, 1) = 2^floor((n-1)/2).
T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(n-k, j)*Pell(n-j), where Pell(n) = A000129(n).
Sum_{k=1..n} T(n, k) = Pell(n+1) -2^floor(n/2)*((1 + (-1)^n)/2) - 2^floor((n - 1)/2)*((1 - (-1)^n)/2). (End)