cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117919 Triangle read by rows: T(n, k) = 2^floor((k-1)/2)*binomial(n-1, k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 2, 1, 4, 12, 8, 4, 1, 5, 20, 20, 20, 4, 1, 6, 30, 40, 60, 24, 8, 1, 7, 42, 70, 140, 84, 56, 8, 1, 8, 56, 112, 280, 224, 224, 64, 16, 1, 9, 72, 168, 504, 504, 672, 288, 144, 16, 1, 10, 90, 240, 840, 1008, 1680, 960, 720, 160, 32, 1, 11, 110, 330, 1320, 1848, 3696, 2640, 2640, 880, 352, 32
Offset: 1

Views

Author

Gary W. Adamson, Apr 02 2006

Keywords

Comments

Row sums are the Pell sequence A000129.
Right border = inverse binomial transform of the Pell sequence: (A016116).
This triangle = difference terms of columns from an array generated from binomial transforms of (1,0,0,0...); (1,1,0,0,0...); (1,1,2,2...); (1,1,2,2,4,...); where (1, 1, 2, 2, 4, 4,...) = A016116, the inverse binomial transform of the Pell sequence A000129.
Triangle read by rows, iterates of X * [1,0,0,0,...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (1,2,1,2,1,2,...) in the subdiagonal, with the rest zeros. - Gary W. Adamson, May 10 2008
This sequence is jointly generated with A135837 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012

Examples

			First few rows of the generating array are:
  1, 1, 1,  1,  1, ...
  1, 2, 3,  4,  5, ...
  1, 2, 5, 10, 17, ...
  1, 2, 5, 12, 25, ...
  1, 2, 5, 12, 29, ...
  ...
Taking difference terms of the columns, we get this triangle. First few rows are:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,  2;
  1, 4, 12,  8,   4;
  1, 5, 20, 20,  20,  4;
  1, 6, 30, 40,  60, 24,  8;
  1, 7, 42, 70, 140, 84, 56, 8;
  ...
		

Crossrefs

Programs

  • Magma
    [2^Floor((k-1)/2)*Binomial(n-1, k-1): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 23 2021
    
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= 2*x*u[n-1, x] + v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A117919 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A135837 *)
    (* Second program *)
    Table[2^Floor[(k-1)/2]*Binomial[n-1, k-1], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Oct 23 2021 *)
  • Sage
    flatten([[2^((k-1)//2)*binomial(n-1,k-1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Oct 23 2021

Formula

From G. C. Greubel, Oct 23 2021: (Start)
T(n, k) = 2^floor((k-1)/2)*binomial(n-1, k-1).
Sum_{k=0..n} T(n, k) = A000129(n). (End)

Extensions

Name changed and more terms added by G. C. Greubel, Oct 23 2021