cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117934 Perfect powers (A001597) that are close, that is, between consecutive squares.

Original entry on oeis.org

27, 32, 125, 128, 2187, 2197, 6434856, 6436343, 312079600999, 312079650687, 328080401001, 328080696273, 11305786504384, 11305787424768, 62854898176000, 62854912109375, 79723529268319, 79723537443243, 4550858390629024
Offset: 1

Views

Author

T. D. Noe, Apr 03 2006

Keywords

Comments

It appears that all pairs of close powers involve a cube. For three pairs, the other power is a 7th power. For all remaining pairs, the other power is a 5th power. If this is true, then three powers are never close.
For the first 360 terms, 176 pairs are a cube and a 5th power. The remaining four pairs are a cube and a 7th power. - Donovan Johnson, Feb 26 2011
Loxton proves that the interval [n, n+sqrt(n)] contains at most exp(40 log log n log log log n) powers for n >= 16, and hence there are at most 2*exp(40 log log n log log log n) between consecutive squares in the interval containing n. - Charles R Greathouse IV, Jun 25 2017

Examples

			27 and 32 are close because they are between 25 and 36.
		

Crossrefs

Cf. A097056, A117896 (number of perfect powers between consecutive squares n^2 and (n+1)^2).

Programs

  • Mathematica
    nMax=10^14; lst={}; log2Max=Ceiling[Log[2,nMax]]; bases=Table[2,{log2Max}]; powers=bases^Range[log2Max]; powers[[1]]=Infinity; currPP=1; cnt=0; While[nextPP=Min[powers]; nextPP <= nMax, pos=Flatten[Position[powers,nextPP]]; If[MemberQ[pos,2], cnt=0, cnt++ ]; If[cnt>1, AppendTo[lst,{currPP,nextPP}]]; Do[k=pos[[i]]; bases[[k]]++; powers[[k]]=bases[[k]]^k, {i,Length[pos]}]; currPP=nextPP]; Flatten[lst]