A117936 Triangle, rows = inverse binomial transforms of A073133 columns.
1, 1, 1, 2, 3, 2, 3, 9, 12, 6, 5, 24, 56, 60, 24, 8, 62, 228, 414, 360, 120, 13, 156, 864, 2400, 3480, 2520, 720, 21, 387, 3132, 12606, 27360, 32640, 20160, 5040, 34, 951, 11034, 62220, 190704, 335160, 337680, 181440, 40320, 55, 2323, 38136, 294588, 1229760, 2997120, 4394880, 3820320, 1814400, 362880
Offset: 1
Examples
First few columns of A073133 are: (1, 1, 1, ...); (1, 2, 3, ...); (2, 5, 10, 17, ...); (3, 12, 33, 72, ...). As sequences, these are f(x), Fibonacci polynomials: (1); (x); (x^2 + 1); (x^3 + 2*x); (x^4 + 3*x^2 + 1); (x^5 + 4*x^3 + 3*x); ... For example, f(x), x = 1,2,3,... using (x^4 + 3*x^2 + 1) generates Column 5 of A073133: (5, 29, 109, 305, ...). Inverse binomial transforms of the foregoing columns generates the triangle rows: 1; 1, 1; 2, 3, 2; 3, 9, 12, 6; 5, 24, 56, 60, 24; 8, 62, 228, 414, 360, 120; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flatten
Programs
-
Maple
A117936 := proc(n,k) add( A073133(i+1,n)*binomial(k-1,i)*(-1)^(i-k-1),i=0..k-1) ; end proc: seq(seq(A117936(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Aug 16 2019
-
Mathematica
(* A = A073133 *) A[, 1] = 1; A[n, k_] := A[n, k] = If[k < 0, 0, n A[n, k - 1] + A[n, k - 2]]; T[n_, k_] := Sum[A[i+1, n] Binomial[k-1, i] (-1)^(i - k - 1), {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
-
Sage
@CachedFunction def A073133(n,k): return 0 if (k<0) else 1 if (k==1) else n*A073133(n,k-1) + A073133(n,k-2) def A117936(n,k): return sum( (-1)^(j-k+1)*binomial(k-1, j)*A073133(j+1,n) for j in (0..k-1) ) flatten([[A117936(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021
Formula
Inverse binomial transforms of A073133 columns. Such columns are f(x), Fibonacci polynomials.
Comments