cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117936 Triangle, rows = inverse binomial transforms of A073133 columns.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 9, 12, 6, 5, 24, 56, 60, 24, 8, 62, 228, 414, 360, 120, 13, 156, 864, 2400, 3480, 2520, 720, 21, 387, 3132, 12606, 27360, 32640, 20160, 5040, 34, 951, 11034, 62220, 190704, 335160, 337680, 181440, 40320, 55, 2323, 38136, 294588, 1229760, 2997120, 4394880, 3820320, 1814400, 362880
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Left border of the triangle = Fibonacci numbers, right border = factorials. Companion triangle A117937 is generated from Lucas polynomials, using analogous operations.
Note that binomial transforms are defined from offset 1 here. - R. J. Mathar, Aug 16 2019

Examples

			First few columns of A073133 are: (1, 1, 1, ...); (1, 2, 3, ...); (2, 5, 10, 17, ...); (3, 12, 33, 72, ...). As sequences, these are f(x), Fibonacci polynomials: (1); (x); (x^2 + 1); (x^3 + 2*x); (x^4 + 3*x^2 + 1); (x^5 + 4*x^3 + 3*x); ... For example, f(x), x = 1,2,3,... using (x^4 + 3*x^2 + 1) generates Column 5 of A073133: (5, 29, 109, 305, ...).
Inverse binomial transforms of the foregoing columns generates the triangle rows:
  1;
  1,  1;
  2,  3,   2;
  3,  9,  12,   6;
  5, 24,  56,  60,  24;
  8, 62, 228, 414, 360, 120;
  ...
		

Crossrefs

Cf. A006684 (column 2), A309717 (column 3 halved).

Programs

  • Maple
    A117936 := proc(n,k)
        add( A073133(i+1,n)*binomial(k-1,i)*(-1)^(i-k-1),i=0..k-1) ;
    end proc:
    seq(seq(A117936(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    (* A = A073133 *) A[, 1] = 1; A[n, k_] := A[n, k] = If[k < 0, 0, n A[n, k - 1] + A[n, k - 2]];
    T[n_, k_] := Sum[A[i+1, n] Binomial[k-1, i] (-1)^(i - k - 1), {i, 0, k-1}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
  • Sage
    @CachedFunction
    def A073133(n,k): return 0 if (k<0) else 1 if (k==1) else n*A073133(n,k-1) + A073133(n,k-2)
    def A117936(n,k): return sum( (-1)^(j-k+1)*binomial(k-1, j)*A073133(j+1,n) for j in (0..k-1) )
    flatten([[A117936(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021

Formula

Inverse binomial transforms of A073133 columns. Such columns are f(x), Fibonacci polynomials.