A117938 Triangle, columns generated from Lucas Polynomials.
1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 11, 14, 7, 1, 5, 18, 36, 34, 11, 1, 6, 27, 76, 119, 82, 18, 1, 7, 38, 140, 322, 393, 198, 29, 1, 8, 51, 234, 727, 1364, 1298, 478, 47, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 123
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 1, 2, 3; 1, 3, 6, 4; 1, 4, 11, 14, 7; 1, 5, 18, 36, 34, 11; 1, 6, 27, 76, 119, 82, 18; 1, 7, 38, 140, 322, 393, 198, 29; ... For example, T(7,4) = 76 = f(4), x^3 + 3*x = 64 + 12 = 76.
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Maple
Lucas := proc(n,x) # see A114525 option remember; if n=0 then 2; elif n =1 then x ; else x*procname(n-1,x)+procname(n-2,x) ; end if; expand(%) ; end proc: A117938 := proc(n::integer,k::integer) if k = 1 then 1; else subs(x=n-k+1,Lucas(k-1,x)) ; end if; end proc: seq(seq(A117938(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 16 2019
-
Mathematica
T[n_, k_]:= LucasL[k-1, n-k+1] - Boole[k==1]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 28 2021 *)
-
Sage
def A117938(n,k): return 1 if (k==1) else round(2^(1-k)*( (n-k+1 + sqrt((n-k)*(n-k+2) + 5))^(k-1) + (n-k+1 - sqrt((n-k)*(n-k+2) + 5))^(k-1) )) flatten([[A117938(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 28 2021
Formula
Extensions
Terms a(51) and a(52) corrected by G. C. Greubel, Oct 28 2021
Comments