A117945 Triangle related to powers of 3 partitions of n.
1, 0, 1, -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; -1, 0, 1; 0, 0, 0, 1; 0, 0, 0, 0, 1; 0, 0, 0, -1, 0, 1; -1, 0, 0, 0, 0, 0, 1; 0, -1, 0, 0, 0, 0, 0, 1; 1, 0, -1, 0, 0, 0, -1, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
M[n_, k_]:= M[n, k] = If[k>n, 0, Mod[Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 2], 0]; m:= m= With[{q=60}, Table[M[n, k], {n,0,q}, {k,0,q}]]; T[n_, k_]:= Inverse[m][[n+1, k+1]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
Comments