cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117958 Number of partitions of n into odd parts, each part occurring an odd number of times.

Original entry on oeis.org

1, 1, 0, 2, 1, 2, 2, 2, 4, 4, 6, 4, 8, 6, 10, 12, 15, 14, 18, 20, 22, 30, 30, 36, 40, 51, 50, 66, 66, 80, 86, 102, 108, 130, 138, 164, 182, 200, 224, 250, 280, 306, 352, 378, 428, 470, 530, 566, 660, 703, 792, 854, 960, 1034, 1172, 1264, 1402, 1520, 1688, 1828, 2036
Offset: 0

Views

Author

Emeric Deutsch, Apr 08 2006

Keywords

Examples

			a(8) = 4 because we have [7,1], [5,3], [5,1,1,1] and [3,1,1,1,1,1].
		

Programs

  • Maple
    g:=product(1+x^(2*k-1)/(1-x^(4*k-2)),k=1..50): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(i*j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
           +b(n, i-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 31 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[i*j, 2] == 0, 0, b[n-i*j, i-1]], {j, 1, n/i}] + b[n, i-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2)) / (1-x^(4*k-2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)

Formula

G.f.: product(1+x^(2k-1)/(1-x^(4k-2)), k=1..infinity).
a(n) ~ (Pi^2/6 + 4*log(phi)^2)^(1/4) * exp(sqrt((Pi^2/6 + 4*log(phi)^2)*n)) / (4*sqrt(Pi)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016