A117964 a(n) = A117963(n) mod 2.
1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Links
Formula
a(n)=sum{k=0..floor(n/2), L(C(n-k,k)/3)} mod 2 where L(j/p) is the Legendre symbol of j and p.
a(2*A081601(n)) = a(1+2*A081601(n)) = 1. [Conjectured, also these two formulas together seem to give the positions of all 1's] - Antti Karttunen, Jan 01 2023
Comments