A118087 Start with 1 and repeatedly reverse the digits and add 43 to get the next term.
1, 44, 87, 121, 164, 504, 448, 887, 831, 181, 224, 465, 607, 749, 990, 142, 284, 525, 568, 908, 852, 301, 146, 684, 529, 968, 912, 262, 305, 546, 688, 929, 972, 322, 266, 705, 550, 98, 132, 274, 515, 558, 898, 941, 192, 334, 476, 717, 760, 110, 54, 88, 131, 174, 514, 458, 897, 841, 191, 234, 475, 617, 759, 1000, 44
Offset: 1
Links
- N. J. A. Sloane and others, Sequences of RADD type, OEIS wiki.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, 43 +(s-> parse( cat(seq(s[-i], i=1..length(s)))))(cat("", a(n-1)))) end: seq(a(n), n=1..65); # Alois P. Heinz, Nov 07 2019
Formula
a(n) = 43 + A004086(a(n-1)) for n > 1, a(1) = 1. - Alois P. Heinz, Nov 07 2019
Extensions
a(43)-a(52) corrected and more terms added by Alois P. Heinz, Nov 07 2019
Comments