cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118108 Decimal representation of n-th iteration of the Rule 54 elementary cellular automaton starting with a single black cell.

Original entry on oeis.org

1, 7, 17, 119, 273, 1911, 4369, 30583, 69905, 489335, 1118481, 7829367, 17895697, 125269879, 286331153, 2004318071, 4581298449, 32069089143, 73300775185, 513105426295, 1172812402961, 8209686820727, 18764998447377, 131354989131639, 300239975158033
Offset: 0

Views

Author

Eric W. Weisstein, Apr 13 2006

Keywords

Comments

a(1660) is 1000 digits long. - Michael De Vlieger, Oct 07 2015

Examples

			From _Michael De Vlieger_, Oct 07 2015: (Start)
First 8 rows, representing ON cells as "1", OFF cells within the bounds of ON cells as "0", interpreted as a binary number at left, the decimal equivalent appearing at right:
                    1 =     1
                  111 =     7
               1 0001 =    17
             111 0111 =   119
          1 0001 0001 =   273
        111 0111 0111 =  1911
     1 0001 0001 0001 =  4369
   111 0111 0111 0111 = 30583
1 0001 0001 0001 0001 = 69905
(End)
		

Crossrefs

See A071030, A118109 for two other versions of this sequence.

Programs

  • Mathematica
    clip[lst_] := Block[{p = Flatten@ Position[lst, 1]}, Take[lst, {Min@ p, Max@ p}]]; FromDigits[#, 2] & /@ Map[clip, CellularAutomaton[54, {{1}, 0}, 27]] (* or *)
    Table[If[EvenQ@ n, (4^(n + 2) - 1), 7 (4^(n + 1) - 1)]/15, {n, 0, 27}] (* Michael De Vlieger, Oct 07 2015 *)
  • Python
    print([(16+12*(n%2))*4**n//15 for n in range(30)]) # Karl V. Keller, Jr., Aug 04 2021

Formula

a(n) = 7*(4^(n+1)-1)/15 for n odd; a(n) = (4^(n+2)-1)/15 for n even.
From Colin Barker, Oct 08 2015 and Apr 16 2019: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>3.
G.f.: (7*x+1) / ((x-1)*(x+1)*(4*x-1)*(4*x+1)).
(End)
a(n) = floor((16+12*(n mod 2))*4^n/15). - Karl V. Keller, Jr., Aug 04 2021

Extensions

a(23)-a(24) from Michael De Vlieger, Oct 07 2015