A118123 a(n) = number of k's such that prime(n+1) = prime(n) + (prime(n) mod k).
0, 0, 1, 0, 2, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 1, 3, 2, 4, 3, 1, 4, 3, 3, 2, 5, 4, 7, 6, 2, 2, 2, 7, 2, 5, 2, 1, 2, 3, 1, 3, 3, 7, 6, 7, 2, 1, 2, 8, 7, 1, 3, 5, 4, 1, 1, 3, 2, 6, 5, 5, 3, 2, 3, 2, 2, 4, 2, 7, 6, 1, 6, 2, 1, 6, 3, 2, 2, 2, 5, 3, 2, 7, 3, 6, 3, 6, 2, 7, 6, 5, 2, 6, 5, 10, 3, 2, 3, 2, 2, 2, 3, 1, 9, 2
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := If[n == 1, 0, Block[{p = Prime@n, np = Prime[n + 1]}, Length@Select[Divisors[2p - np], # >= np - p &]]]; Array[f, 105] nk[n_]:=Count[Mod[n,Range[n-1]],?(#==NextPrime[n]-n&)]; nk/@Prime[ Range[ 110]] (* _Harvey P. Dale, May 27 2016 *)
-
PARI
A118123(n)={my(d=prime(n+1)-n=prime(n)); sumdiv(n-d,k,k>d)}
Formula
a(n) = # { k>0 | prime(n+1) - prime(n) = prime(n) % k }, where p % k is the remainder of p divided by k.
Extensions
Edited by M. F. Hasler, Nov 07 2009