cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117877 Least p=prime(k) for which A118123(k)=n.

Original entry on oeis.org

2, 5, 11, 17, 67, 101, 109, 107, 227, 569, 499, 821, 1163, 2153, 1489, 1487, 1579, 4111, 6841, 10739, 5783, 21383, 4729, 3467, 34183, 58741, 19319, 22283, 22279, 22277, 16069, 16067, 17333, 91583, 20479, 20477, 82223, 158363, 31189, 70877, 45061
Offset: 0

Views

Author

Keywords

Examples

			a(0)=2 because no k exists and it is the least of the three {2, 3 & 7} in A117563 or A117078.
a(1)=5 because 5 + 5 (mod 3) = 7,
a(2)=11 because 11 + 11 (mod 3) = 11 + 11 (mod 9) = 13.
a(3)=17 because 17 + 17 (mod 3) = 17 + 17 (mod 5) = 17 + 17 (mod 15) = 19,
a(4)=67 because 67 + 67 (mod 7) = 67 + 67 (mod 9) = 67 + 67 (mod 21) = 67 + 67 (mod 63) = 71,
a(5)=101 because 101 + 101 (mod 3) = 101 + 101 (mod 9) = 101 + 101 (mod 11) = 101 + 101 (mod 33) = 101 + 101 (mod 99), etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@n, np = Prime[n + 1]}, Length@ Select[ Divisors[2p - np], # >= np - p &]]; t = Table[0, {50}]; Do[ a = f@n; If[a < 50 && t[[a + 1]] == 0, t[[a + 1]] = n; Print[{a, n, Prime@n}]], {n, 100000}]
  • PARI
    A117877(n)={ for( k=n+1, 1e9, n==A118123(k) & return(prime(k)))}

Extensions

Edited by M. F. Hasler, Nov 07 2009

A118144 Numbers of prime factors of l, where l is defined in A118534.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 3, 2, 1, 3, 2, 4, 2, 3, 3, 3, 3, 3, 2, 3, 4, 2, 3, 2, 1, 2, 2, 1, 2, 3, 4, 4, 3, 2, 1, 2, 4, 4, 1, 2
Offset: 1

Views

Author

Rémi Eismann and Fabien Sibenaler, May 14 2006, Feb 14 2008

Keywords

Comments

a(n) = 0 only for n = 1, 2 and 4.

Examples

			For a(1), l=0 thus a(1)=0,
for a(3), l=3 thus a(3)=1,
for a(8), l=15=3*5 thus a(8)=2,
for a(24), l=81=3*3*3*3 thus a(24)=4.
		

Crossrefs

Formula

a(n) = numbers of factors of l, largest l such that prime(n+1) = prime(n) + (prime(n) mod l), or 0 if no such l exists.

A106752 Numbers of prime factors of k, k defined in A117078.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Rémi Eismann, Jun 22 2007, Feb 14 2008

Keywords

Comments

a(n) = 0 only for n = 1, 2 and 4.

Examples

			For a(1), k=0 thus a(1)=0,
For a(3), k=3 thus a(3)=1,
For a(11), k=25=5*5 thus a(11)=2.
		

Crossrefs

Formula

a(n) = numbers of factors of A117078(n). A117078(n) : smallest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists.
Showing 1-3 of 3 results.