A216204 Primes p=prime(i) of level (1,8), i.e., such that A118534(i) = prime(i-8).
259033, 308153, 343831, 377393, 576227, 597697, 780733, 990397, 1408889, 1643893, 1648613, 1678777, 1910179, 1942207, 2045377, 2049191, 2073403, 2388703, 2403701, 2430611, 2448883, 2481517, 2572529, 2710457, 2827687, 2982697, 3376859, 3404579, 3942413, 4119419
Offset: 1
Keywords
Examples
343831 = prime(24490) is a term because: prime(24491) = 343891, prime(24382) = 343771; 2*prime(24490) - prime(24491) = prime(24382).
Links
- Fabien Sibenaler, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
With[{m = 8}, Prime@ Select[Range[m + 1, 2*10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
-
PARI
lista(nn) = my(v=primes(9)); forprime(p=29, nn, if(2*v[9]-p==v[1], print1(v[9], ", ")); v=concat(v[2..9], p)); \\ Jinyuan Wang, Jun 18 2021
Comments