cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118171 Decimal representation of n-th iteration of the Rule 158 elementary cellular automaton starting with a single black cell.

Original entry on oeis.org

1, 7, 29, 115, 477, 1843, 7645, 29491, 122333, 471859, 1957341, 7549747, 31317469, 120795955, 501079517, 1932735283, 8017272285, 30923764531, 128276356573, 494780232499, 2052421705181, 7916483719987, 32838747282909, 126663739519795, 525419956526557
Offset: 0

Views

Author

Eric W. Weisstein, Apr 13 2006

Keywords

Examples

			            1;
         1, 1, 1;
      1, 1, 1, 0, 1;
   1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 0, 1, 1, 1, 0, 1;
...
From _Michael De Vlieger_, Oct 08 2015: (Start)
First 8 rows, representing ON cells as "1", OFF cells within the bounds
of ON cells as "0", interpreted as a binary number at left, the decimal
equivalent appearing at right:
                   1 =      1
                 111 =      7
              1 1101 =     29
            111 0011 =    115
         1 1101 1101 =    477
       111 0011 0011 =   1843
    1 1101 1101 1101 =   7645
  111 0011 0011 0011 =  29491
11101 1101 1101 1101 = 122333
(End)
		

Crossrefs

Cf. A071037 (cells), A265379 (binary).

Programs

  • Mathematica
    Table[(-16 + (-4)^n - 10 (-1)^n + 55*4^n)/30, {n, 0, 24}] (* or *)
    clip[lst_] := Block[{p = Flatten@ Position[lst, 1]}, Take[lst, {Min@ p, Max@ p}]]; FromDigits[#, 2] & /@ Map[clip, CellularAutomaton[158, {{1}, 0}, 24]] (* Michael De Vlieger, Oct 08 2015 *)
  • PARI
    Vec(-(4*x^3-12*x^2-7*x-1)/((x-1)*(x+1)*(4*x-1)*(4*x+1)) + O(x^30)) \\ Colin Barker, Oct 08 2015
    
  • PARI
    vector(100, n, n--; (1/30)*(-16+(-4)^n-10*(-1)^n+55*4^n)) \\ Altug Alkan, Oct 08 2015
    
  • Python
    print([27*4**n//15 if n%2 else 28*4**n//15 for n in range(50)]) # Karl V. Keller, Jr., May 07 2022

Formula

a(n) = (1/30)*(-16+(-4)^n-10*(-1)^n+55*4^n).
From Colin Barker, Oct 08 2015: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>3.
G.f.: -(4*x^3-12*x^2-7*x-1) / ((x-1)*(x+1)*(4*x-1)*(4*x+1)).
(End)
a(n) = floor(28*4^n/15) for even n>=0; a(n) = floor(27*4^n/15) for odd n. - Karl V. Keller, Jr., Oct 09 2020