cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118252 The least positive integer whose reversed binary representation does not occur in the concatenation of the reversed binary representations of all preceding terms.

Original entry on oeis.org

1, 2, 3, 4, 8, 10, 11, 12, 15, 16, 22, 24, 27, 32, 35, 36, 38, 43, 44, 54, 59, 64, 66, 70, 76, 79, 83, 85, 88, 91, 95, 97, 99, 116, 122, 127, 128, 130, 132, 136, 140, 147, 148, 150, 155, 158, 163, 169, 170, 175, 176, 179, 182, 184, 192, 196, 201, 217, 232
Offset: 1

Views

Author

Leroy Quet, Apr 18 2006

Keywords

Comments

See the variant A118250 for comments and examples.

Crossrefs

Cf. A118248 (variant without reversal), A118250 (the same with a(0)=0), A118251 (concatenation of terms in binary).
Cf. A190896.

Programs

  • Mathematica
    a = {1}; b = {1}; Do[k = b[[i - 1]] + 1; While[SequenceCount[Flatten@ a, Set[d, Reverse@ IntegerDigits[k, 2]]] != 0, k++]; a = Join[a, d]; AppendTo[b, k], {i, 2, 59}]; b (* Michael De Vlieger, Aug 21 2017 *)
  • PARI
    A118252(n,show=0,a=1)={my(c=[a],S=[],L); for(k=1,n, show & print1(a","); while( setsearch(S,binary(a++)),); c=concat(binary(a),c); S=[]; for(i=0,#c-L=#binary(a), c[i+1] & for(j=i+L,min(i+L+1,#c), S=setunion(S,Set(t=[vecextract(c,2^j-2^i)])))));a}  \\ M. F. Hasler, Dec 29 2012

Extensions

More terms from Graeme McRae, Apr 19 2006
Explicit definition from M. F. Hasler, Dec 29 2012