cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118253 Decimal expansion of Product_{k>=1} sinc(2Pi/(2k+1)).

Original entry on oeis.org

1, 8, 0, 5, 5, 0, 5, 4, 1, 8, 4, 9, 8, 5, 1, 9, 2, 3, 9, 1, 2, 3, 7, 2, 5, 9, 2, 9, 3, 0, 5, 0, 6, 0, 7, 5, 9, 1, 1, 3, 4, 0, 2, 3, 5, 8, 0, 5, 6, 1, 8, 3, 9, 5, 4, 1, 2, 3, 5, 9, 9, 9, 2, 2, 1, 7, 6, 6, 3, 1, 8, 4, 5, 9, 3, 0, 6, 2, 0, 7, 3, 5, 0, 6, 0, 6, 6, 2, 7, 3, 3, 1, 1, 0, 6, 8, 7, 6, 0, 2, 9, 2
Offset: 0

Views

Author

Eric W. Weisstein, Apr 18 2006

Keywords

Examples

			0.180550541849851923912372592930506075911340235805618395412359992217663184593...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 757, section 6.2.4, formula 2.

Crossrefs

Cf. A051762.

Programs

  • Maple
    evalf(Pi/(2*(product(sec(Pi/k), k = 3..infinity))), 104); # Vaclav Kotesovec, Aug 16 2015
  • Mathematica
    digits = 102; $MaxExtraPrecision = 100; exactEnd = 100; seriesOrder = 60; f[n_] := Log[Sinc[2Pi/(2n + 1)]]; exactSum = Sum[f[n], {n, 1, exactEnd}]; se = Series[f[n], {n, Infinity, seriesOrder}] // Normal; extraSum = Sum[se, {n, exactEnd + 1, Infinity}]; RealDigits[Exp[exactSum + extraSum ], 10, digits] // First (* Jean-François Alcover, Feb 07 2013 *)

Formula

Pi/(2K), where K is given by A051762.

Extensions

Last digit corrected by Vaclav Kotesovec, Aug 16 2015