A118289 Decimal expansion of the arc length of the bifoliate.
6, 4, 7, 9, 9, 1, 1, 9, 5, 9, 8, 4, 6, 4, 1, 6, 5, 5, 9, 9, 4, 0, 2, 1, 3, 7, 1, 4, 1, 0, 1, 9, 3, 8, 3, 2, 9, 5, 4, 3, 7, 3, 3, 1, 4, 4, 3, 0, 6, 5, 6, 3, 8, 8, 4, 1, 4, 2, 6, 1, 9, 6, 7, 4, 8, 2, 6, 6, 2, 7, 8, 4, 0, 1, 1, 6, 8, 8, 2, 9, 5, 6, 4, 1, 1, 0, 2, 7, 6, 6, 9, 1, 9, 8, 8, 9, 1, 3, 3, 1, 0, 8, 8, 0, 9
Offset: 1
Examples
6.4799119598464165599...
Links
- Eric Weisstein's World of Mathematics, Bifoliate
Programs
-
Mathematica
f1[x_] := Sqrt[x + Sqrt[x^2 - x^4]]; f2[x_] := Sqrt[x - Sqrt[x^2 - x^4]]; g1[y_] = x /. Solve[y == f1[x], x][[4]]; g2[y_] = x /. Solve[y == f2[x], x][[4]]; x1 = 7/8; y1 = f1[x1]; y2 = f2[x1]; ni[f_, x_] := NIntegrate[f, x, WorkingPrecision -> 120]; i1 = ni[Sqrt[1 + f1'[x]^2], {x, 0, x1}]; i2 = ni[Sqrt[1 + f2'[x]^2], {x, 0, x1}]; i3 = ni[Sqrt[1 + g1'[y]^2], {y, 1, y1}]; i4 = ni[Sqrt[1 + g2'[y]^2], {y, y2, 1}]; Take[RealDigits[2(i1+i2+i3+i4)][[1]], 105] (* Jean-François Alcover, Nov 25 2011 *)