cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118289 Decimal expansion of the arc length of the bifoliate.

Original entry on oeis.org

6, 4, 7, 9, 9, 1, 1, 9, 5, 9, 8, 4, 6, 4, 1, 6, 5, 5, 9, 9, 4, 0, 2, 1, 3, 7, 1, 4, 1, 0, 1, 9, 3, 8, 3, 2, 9, 5, 4, 3, 7, 3, 3, 1, 4, 4, 3, 0, 6, 5, 6, 3, 8, 8, 4, 1, 4, 2, 6, 1, 9, 6, 7, 4, 8, 2, 6, 6, 2, 7, 8, 4, 0, 1, 1, 6, 8, 8, 2, 9, 5, 6, 4, 1, 1, 0, 2, 7, 6, 6, 9, 1, 9, 8, 8, 9, 1, 3, 3, 1, 0, 8, 8, 0, 9
Offset: 1

Views

Author

Eric W. Weisstein, Apr 22 2006

Keywords

Examples

			6.4799119598464165599...
		

Programs

  • Mathematica
    f1[x_] := Sqrt[x + Sqrt[x^2 - x^4]]; f2[x_] := Sqrt[x - Sqrt[x^2 - x^4]]; g1[y_] = x /. Solve[y == f1[x], x][[4]]; g2[y_] = x /. Solve[y == f2[x], x][[4]]; x1 = 7/8; y1 = f1[x1]; y2 = f2[x1]; ni[f_, x_] := NIntegrate[f, x, WorkingPrecision -> 120]; i1 = ni[Sqrt[1 + f1'[x]^2], {x, 0, x1}]; i2 = ni[Sqrt[1 + f2'[x]^2], {x, 0, x1}]; i3 = ni[Sqrt[1 + g1'[y]^2], {y, 1, y1}]; i4 = ni[Sqrt[1 + g2'[y]^2], {y, y2, 1}]; Take[RealDigits[2(i1+i2+i3+i4)][[1]], 105] (* Jean-François Alcover, Nov 25 2011 *)