A118313 Sum of squared end-to-end distances of all n-step self-avoiding walks on the simple cubic lattice.
0, 6, 72, 582, 4032, 25566, 153528, 886926, 4983456, 27401502, 148157880, 790096950, 4166321184, 21760624254, 112743796632, 580052260230, 2966294589312, 15087996161382, 76384144381272, 385066579325550, 1933885653380544, 9679153967272734, 48295148145655224, 240292643254616694, 1192504522283625600, 5904015201226909614, 29166829902019914840, 143797743705453990030, 707626784073985438752, 3476154136334368955958, 17048697241184582716248, 83487969681726067169454, 408264709609407519880320, 1993794711631386183977574, 9724709261537887936102872, 47376158929939177384568598, 230547785968352575619933376
Offset: 0
Keywords
Links
- R. D. Schram, G. T. Barkema, R. H. Bisseling, Table of n, a(n) for n = 0..36
- N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A5 for n<=30.
- A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.
- D. MacDonald, S. Joseph, D. L. Hunter, L. L. Mosley, N. Jan and A. J. Guttmann, Self-avoiding walks on the simple cubic lattice,J Phys A: Math Gen 33 (2000) No 34, 5973-5983
- Raoul D. Schram, Gerard T. Barkema, Rob H. Bisseling, Exact enumeration of self-avoiding walks, J Stat. Mech. (2011) P06019.
Extensions
a(5) corrected by Nathan Clisby, Nov 24 2010
a(14), a(22) corrected by Hugo Pfoertner, Aug 13 2011
Comments