A118319 a(n) = (highest power of 2 dividing n)th integer among those positive integers not occurring in {a(1),a(2),a(3),...,a(n-1)}.
1, 3, 2, 7, 4, 6, 5, 15, 8, 10, 9, 14, 11, 13, 12, 31, 16, 18, 17, 22, 19, 21, 20, 30, 23, 25, 24, 29, 26, 28, 27, 63, 32, 34, 33, 38, 35, 37, 36, 46, 39, 41, 40, 45, 42, 44, 43, 62, 47, 49, 48, 53, 50, 52, 51, 61, 54, 56, 55, 60, 57, 59, 58, 127, 64, 66, 65, 70, 67, 69, 68, 78
Offset: 1
Examples
4 is the highest power of 2 dividing 12. Those positive integers not occurring among the first 11 terms of the sequence form the sequence 11, 12, 13, 14, 16,... Now 14 is the 4th of these integers, so a(12) = 14.
Links
Programs
-
Maple
A118319 := proc(nmin) local a,anxt,i,n ; a := [1] ; while nops(a) < nmin do n := nops(a)+1 ; i := 2^A007814(n); anxt := 0 ; while i > 0 do anxt := anxt+1 ; while anxt in a do anxt := anxt+1 ; od ; i := i-1; od ; a := [op(a),anxt] ; od; a ; end: A118319(80) ; # R. J. Mathar, Sep 06 2007 a := n -> n + 2^padic[ordp](n, 2) - add(convert(n, base, 2)): seq(a(n), n = 1..72); # Peter Luschny, Mar 08 2025
-
Mathematica
a[1] := 1; a[n_] := a[n] = Part[ Complement[ Range[2 n], Table[a[i], {i, n - 1}]], 2^IntegerExponent[n, 2]]; Array[a, 100] (* Birkas Gyorgy, Jul 09 2012 *)
-
PARI
a(n) = n + 1<
Kevin Ryde, Mar 02 2025
Formula
a(2^m) = 2^(m+1) - 1; a(2^m+k) = a(k) + 2^m - 1 for 0 < k < 2^m. - Andrey Zabolotskiy, Oct 10 2019
Extensions
More terms from R. J. Mathar, Sep 06 2007
Comments