A118371 Fastest growing sequence of primes satisfying Goldbach's conjecture.
2, 3, 5, 7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 79, 83, 101, 107, 109, 113, 131, 139, 157, 167, 199, 211, 251, 269, 281, 283, 293, 307, 313, 337, 383, 401, 421, 431, 439, 449, 457, 491, 509, 521, 523, 569, 601, 643, 673, 691, 701, 769, 773, 811, 839, 863, 881
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for primes up to 10^6
- Andrew Granville, Refinements of Goldbach's conjecture and the Generalized Riemann Hypothesis
- T. D. Noe, Terms up to 10^9 (1.3 MB)
Crossrefs
Cf. A105170 (primes unnecessary for Goldbach's conjecture).
Programs
-
Mathematica
ps={2,3}; Do[pn=Select[2n-ps,PrimeQ]; If[Intersection[ps,pn]=={}, AppendTo[ps, Max[pn]]], {n,4,1000}]; Sort[ps]
Comments