A118400 Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118401) are equal; a signed version of triangle A087698.
1, 1, -1, 1, 0, 1, -1, -1, -1, -1, 1, 2, 2, 2, 1, -1, -3, -4, -4, -3, -1, 1, 4, 7, 8, 7, 4, 1, -1, -5, -11, -15, -15, -11, -5, -1, 1, 6, 16, 26, 30, 26, 16, 6, 1, -1, -7, -22, -42, -56, -56, -42, -22, -7, -1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, -1, -9, -37, -93, -162, -210, -210, -162, -93, -37, -9, -1
Offset: 0
Examples
Triangle T begins: 1; 1,-1; 1, 0, 1; -1,-1,-1,-1; 1, 2, 2, 2, 1; -1,-3,-4,-4,-3,-1; 1, 4, 7, 8, 7, 4, 1; -1,-5,-11,-15,-15,-11,-5,-1; 1, 6, 16, 26, 30, 26, 16, 6, 1; -1,-7,-22,-42,-56,-56,-42,-22,-7,-1; 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1; -1,-9,-37,-93,-162,-210,-210,-162,-93,-37,-9,-1; ... The matrix square is A118401: 1; 0, 1; 2, 0, 1; -2, 2, 0, 1; 4,-2, 2, 0, 1; -6, 4,-2, 2, 0, 1; 8,-6, 4,-2, 2, 0, 1; -10, 8,-6, 4,-2, 2, 0, 1; 12,-10, 8,-6, 4,-2, 2, 0, 1; ... in which all columns are equal.
Crossrefs
Programs
-
PARI
T(n,k)=polcoeff(polcoeff((1+2*x+2*x^2)/(1+x+x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)
-
PARI
T(n,k)=if(n==1&k==0,1,(-1)^n*(binomial(n,k)-2*binomial(n-2,k-1)))
Formula
G.f.: A(x,y) = (1+2*x+2*x^2)/(1+x+x*y). G.f. of column k = (-1)^k*(1+2*x+2*x^2)/(1+x)^(k+1) for k>=0. T(n,k) = (-1)^n*[C(n,k) - 2*C(n-2,k-1)] for n>=k>=0 except that T(1,0)=1.
Comments